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Abstract

Accurate and efficient turbulence simulation in complex geometries is a formidable chal-

lenge. Traditional methods are often limited by low accuracy and/or restrictions to simple

geometries. We explore the merger of Discontinuous Galerkin (DG) spatial discretizations

with Variational Multi-Scale (VMS) modeling, termed Local VMS (LVMS), to overcome

these limitations. DG spatial discretizations support arbitrarily high-order accuracy on un-

structured grids amenable for complex geometries. Furthermore, high-order, hierarchical

representation within DG provides a natural framework for a priori scale separation crucial

for VMS implementation. We show that the combined benefits of DG and VMS within the

LVMS method leads to a promising new approach to LES for use in complex geometries.

The efficacy of LVMS for turbulence simulation is assessed by application to fully-

developed turbulent channel flow. First, a detailed spatial resolution study is undertaken

to record the effects of the DG discretization on turbulence statistics. Here, the local

hp−refinement capabilites of DG are exploited to obtain reliable low-order statistics effi-

ciently. Likewise, resolution guidelines for simulating wall-bounded turbulence using DG

are established. We also explore the influence of enforcing Dirichlet boundary conditions

indirectly through numerical fluxes in DG which allows the solution to jump (slip) at the

channel walls. These jumps are effective in simulating the influence of the wall commen-

surate with the local resolution and this feature of DG is effective in mitigating near-wall

resolution requirements. In particular, we show that by locally modifying the numerical

viscous flux used at the wall, we are able to regulate the near-wall slip through a penalty

that leads to improved shear-stress predictions. This work, demonstrates the potential of

the numerical viscous flux to act as a numerically consistent wall-model and this success

warrants future research.

As in any high-order numerical method some mechanism is required to control aliasing

effects due to nonlinear interactions and to ensure nonlinear stability of the method. In

this context, we evaluate the merits of two approaches to de-aliasing — spectral filtering

and polynomial dealiasing. While both approaches are successful, polynomial-dealiasing

is found to be better suited for use in large-eddy simulation. Finally, results using LVMS

are reported and show good agreement with reference direct numerical simulation thereby

demonstrating the effectiveness of LVMS for wall-bounded turbulence. This success paves

the way for future applications of LVMS to more complex turbulent flows.
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Nomenclature

Roman Symbols

Cs Coefficient of the SGS Smagorinsky model

cs Grid stretching factor

f Body force or force distribution in the momentum equations

h Representative mesh length scale

L Number of modes for given p, L = p + 1

Le Multi-scale partition parameter for element e

Lx Channel length in x

Lz Channel width in z

Nx Number of Elements in x

Ny Number of Elements in y

Nz Number of Elements modes in z

p Pressure, polynomial order

q Quadrature order

Re Reynolds number

Reτ Reynolds number based on friction velocity uτ

s Spectral shift (spectral filter parameter)

S Numerical source term

S, Sij Strain-rate tensor

t Time

t+ Viscous time, t+ = tu2
τ/ν
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(u, v, w) Velocity components in Cartesian coordinates

u Velocity vector

U Exact velocity/solution space

W Test function space

uτ Friction velocity, uτ = (τw/ρ)1/2

u+ Velocity in viscous units, u+ = u/uτ

(x, y, z) Cartesian coordinates

xi Cartesian coordinates

Greek Symbols

δ Half-height or mean half-height of the channel

∆ Finite difference operator

˜∆ VMS model length scale

ε Penalty factor

µ Dynamic viscosity coefficient

ν Kinematic viscosity coefficient, ν = µ/ρ

νT Non-dimensional eddy viscosity in SGS model

Ω Domain of a volume integral

ρ Fluid density

τij Stress tensor

τw Average wall shear stress
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Accents, Superscripts, and Subscripts

()max Maximum value

()rms Root-mean-square value

()+ Wall coordinates or viscous units

() Mean or grid-filtered variables/ Large-scales of the solution

˜() Small-scales of the solution

()′ Unresolved-scales of motion

(̂) Numerical fluxes

Abbreviations

BR Bassi-Rebay numerical viscous flux

BLDG Boundary Local Discontinuous Galerkin numerical viscous flux

DG Discontinuous Galerkin

DNS Direct Numerical Simulation

DYN Dynamic LES

LDG Local Discontinuous Galerkin numerical viscous flux

LES Large Eddy Simulation

�VMS Local VMS

LVMS Local VMS

PD Polynomial Dealiasing

RANS Reynolds Averaged Navier-Stokes

RHS Right Hand Side

RMS Root-Mean-Square
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RK Runge-Kutta

SF Spectral Filter

SBLDG Streamwise-positive BLDG numerical viscous flux

SGS Sub-Grid Scales

TVD Total Variational Diminishing

VMS Variational Multi-Scale
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Chapter 1

Introduction

Mathematical modeling of physical, chemical, and biological phenomenon has become a

useful complement to theoretical and experimental investigations. The culmination of ad-

vances in computational power, improved mathematical description of the aforementioned

systems, and their translation to efficient and accurate solution algorithms have made nu-

merical simulation an indispenable tool in science and engineering. In the case of turbu-

lence, theoretical efforts are severely restricted by the non-linearity of the governing partial

differential equations. Meanwhile experimental studies of turbulence are constrained by

cost (time and facilities) and the limitations of instrumentation in complex geometries.

Here, accurate and high fidelity numerical simulations can serve to provide much needed

insight into fluid dynamics in complex flow configurations, as demonstrated in simpler

geometries [1, 54].

However, numerical simulation of engineering flows that are generally turbulent contin-

ues to be a formidable challenge. Turbulence simulations are inherently expensive compu-

tationally due to the presence of a broad range of spatial and temporal scales (see Fig. 1.1).

The cost of simulations that resolves all the scales of motion are on the order of Re3 (Re

is the Reynolds number that are generally greater than 105 for most engineering flows). A

major portion of this cost, as much as 90% by some estimates [73], is a direct result of

attempting to explicitly resolve boundary layers formed at the fluid and structure interface

i.e. surface of airfoils, walls of a pipes, channels etc. due to viscous effects.

A hierarchy of common turbulence simulation approaches along with the associated

features are found in Table 1.1. The high cost of DNS makes it impractical for realistic

engineering flows. To date, the practical industry standard for turbulence simulation is

RANS. However, the level of detail present in RANS simulations is often insufficient to

satisfactorily capture the unsteady dynamics of flows in complex geometries. Further, the

modeling in the RANS scenario can be very complicated since it aims to model all the

scales of turbulence.

Fortunately, experimental and numerical investigations [5, 54, 55, 89] have revealed

scales that are generally large (relative to the domain of interest) that are responsible for

1
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Type Resolved Scales Cost Models
Direct Numerical
Simulation (DNS) All High None

Large Eddy
Simulation (LES) Large Intermediate SGS closures

Reynolds Averaged
Navier-Stokes (RANS) Mean Low Variable [92]

Hybrid∗ Large/Mean Variable SGS and/or variable [92]

Table 1.1: Turbulence simulation approaches. ∗ Hybrid simulations generally have capa-
bilities intermediate between RANS and LES.

the important dynamical processes in the flow. Large Eddy Simulations (LES) exploits

this feature of turbulence by resolving only these large scales and modeling the remaining

scales using Sub-Grid Scales (SGS) closures [36, 82]. Since the large scales form a small

fraction of the scales present in the flow, it reduces the required degrees of freedom, and

thus, the associated computational cost.

Recently, simulations that combine RANS and LES have been developed that build

upon the merits of both approaches to achieve increased efficiency while retaining sufficient

fidelity [70,83,86]. While these approaches show some advantages in the interim, their long

term success is limited, for a number of reasons (see Section 1.1.3). The current research

aims to develop a framework �VMS, that merges a Discontinuous Galerkin (DG) spatial

discretization with a promising new approach to LES, namely the VMS [28,46,47,76,78].

We believe that this combination has the potential for accurate and efficient turbulence

simulations that overcomes the inherent limitations of both traditional and the more recent

hybrid methods. Now, we present some background information before introducing the

�VMS framework (see Section 1.1.3).

1.1 Turbulence Simulation Background

Turbulence simulation methods such as DNS, LES, and RANS are mature areas of research

precluding a comprehensive review here. Fortunately, there are a number of review articles

and monographs that interested readers may consult for additional details.

A good account of the early successes in turbulence simulation, namely DNS and LES,
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(a)

(b)

Figure 1.1: Typical turbulent shear-flows illustrating large-scale coherent structures: (a)
mixing layer experiment [12], (b) direct numerical simulation of channel flow [31]. This
illustration first appeared in the article by Collis [29]

can be found in the review by Rogallo and Moin [81]. A more recent update on the progress

of DNS as a valuable reasearch tool can found in Moin and Mahesh [68] and the articles

cited therein. Incidently, the current research effort has directly benefitted from the use

of the DNS databases [69] for our validation studies. Similarly, for LES, the reviews of

Ferziger [36] and Lesieur and Metais [60], the monograph by Sagaut [82] provide a good

introduction to the subject. By far the most famous monograph on RANS methods is by

Wilcox [92] while a equally good exposition on the subject can be found in Chen and

Jaw [16].

Meanwhile, estimates for resolving the inner layer i.e. the near-wall region for a bound-

ary layer reveal that over 90% of the computational grid points are clustered in this re-

gion [73]. This statistic spurred researchers to devise methods that forego explicitly re-

solving the near-wall region, and instead modeling the effect of the wall in a number of

ways [33, 66, 73]. These methods that all imply the well-known law of the wall [91] come

under the purview of wall-modeling. The review article by Piomelli and Balaras [73] fol-

lows the developments of wall-modeling approaches and presents instances of their suc-

cessful application to different flows.

Here, we begin with a brief account of the developments in discontinuous Galerkin
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methods and variational multi-scale methods that have either directly and/or indirectly con-

tributed to the current research effort.

1.1.1 Discontinuous Galerkin Methods

Discontinuous Galerkin methods have now existed for about three decades pioneered by

Reed and Hill [79] for the solution of a neutron transport equation in 1973. The follow-

ing year Raviart and LeSaint [59] produced the first mathematical analysis of the method.

Subsequently, the method has been placed on a strong mathematical foundation for linear

hyperbolic problems by the analyses of Johnson and Pitkäranta [51], Richter [80] and Bey

and Oden [10].

However, the extensions of DG to non-linear convection-diffusion problems (Navier-

Stokes) has been a relatively recent development. The active interest in DG for fluid dy-

namics can be attributed to several key advances. One critical factor is the development of

DG methods for diffusion problems. Recently, Arnold et al. [3] presented a comparsion of

DG methods developed for elliptic problems where they reviewed nine such formulations

that have been developed over the years. In order to make the comparisons directly, they

relate the primal formulation commonly associated with interior penalty methods [2, 90]

to the flux formulation common to discontinuous Galerkin methods before undertaking a

unified error analysis [3]. The study finds DG methods that are consistent, stable and pos-

sessing optimal convergence rates, notable among these are the approaches of Douglas and

Dupont [34], Cockburn and Shu [24], and Bassi et al. [8].

Next, the Runge-Kutta Discontinuous Galerkin (RKDG) method was developed start-

ing from one-dimensional scalar systems to a general multi-dimensional conservation laws

by Cockburn and Shu [22, 23, 25, 26]. This development was motivated by the need for

constructing a stable and efficient DG method amenable for solving non-linear hyperbolic

conservation problems. We note in passing that some of these advances benefitted from

the progress in high-order methods used for solving non-linear hyperbolic conservation

systems, such as Riemann solvers, TVD methods, slope limiters etc. (see Toro [88] for

details).

Now, Bassi and Rebay [6] built on the RKDG method for the inviscid flux and in-

troduced a mixed formulation for the viscous flux to extend DG to convection-diffusion

problems. Later, a similar approach was followed by other researchers that resulted in

the Local Discontinous Galerkin [24] approach of Cockburn and Shu and the method of
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Lomtev et al. [64]. The authors note that the current work builds on the work of Bassi-

Rebay [6] and Cockburn and Shu [24] for the dealing with the viscous and Euler fluxes, re-

spectively (see Chapter 2). Simultaneously, an alternative method for dealing with viscous

fluxes that eliminates the need for auxillary variables, generated by mixed formulations,

was developed by Oden et al. [72] and applied to convection-diffusion systems [9].

The progress in DG and their developments upto 1999 can be found in Cockburn, Shu

and Karniadakis [21]. The articles by Arnold et al. [3] and the lecture notes of Cock-

burn [18] provide an excellent introduction to DG methods. The essay on DG methods

by Cockburn [19], an attempt to introduce DG to a wider audience, serves to highlight the

salient features of DG methods in a lucid manner.

1.1.2 Variational Multi-Scale (VMS) Methods

The Variational Multi-Scale (VMS) method was first introduced by Hughes et al. [45, 49]

to provide a robust framework for the simulation of multi-scale phenomenon encountered

in computational mechanics. Subsequently, VMS was introduced as a paradigm for Large

Eddy Simulation (LES) by Hughes, Mazzei and Jansen [46]. Later, by explicitly tracking

all the scales of motion, Collis [28] clarified the modeling assumptions, in the context of

VMS, consistent with traditional turbulence modeling.

The first implementation of VMS with a simple constant coefficient Smagorinsky model

for homogeneous isotropic turbulence [47] was shown to have excellent agreement with

DNS. Soon, the early success was extended to both equilibrium and non-equilibrum tur-

bulent channel flow [48, 71]. Recently, Ramakrishnan and Collis [78] extended VMS to

a discretization that does not readily support scale separation in all directions. In doing

so, they applied VMS for opposition control studies in a turbulent channel where VMS is

shown to have better predictive abilities compared with the dynamic model [15].

Later, by exploiting the well-known near-wall structures of turbulent channel flow, they

relate the partition selection parameter (required for a priori scale separation in VMS) to

the near-wall streak-spacing [76]. In an effort to obtain a robust VMS model, Holmen

et al. [42] employed a dynamic procedure for selecting the Smagorinsky coefficient, that

improves the sensitivity characteristics (to the model parameters) of VMS.

All VMS results mentioned thus far have used global spectral methods that restrict the

applicability of the method to simple geometries. However, VMS has been extended to
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general flow configurations by Jansen [50] and Koobus and Farhat [57] with some suc-

cess. The former employed a low-order (cubic and lower) finite elements while the latter

uses a finite volume approach. However, we believe that for realizing the full potential of

VMS requires a higher order representation within the elements than that afforded in low-

order finite elements. And although the spatial derivatives are computed with high-order

accuracy in the finite volume approach of Koobus and Farhat [57], scale separation is not

straightforward. Here, we attempt to develop and test a method that is not only high-order

accurate, but also readily supports multi-scale implementations.

1.1.3 Local Variational Multi-Scale – �VMS

The �VMS framework, first proposed by Collis [29], aims to overcome the disadvantages

of traditional approaches to turbulence simulation. The shortcomings of the latter arise due

to a variety of reasons [29]: 1) Models are developed without regard for discretization.

2) Models are often tuned to match mean flow quantities. 3) They use ad hoc blending

functions to couple LES and RANS regions and/or wall functions. 4) The methods often

do not converge to the exact solution (DNS). 5) Spatial filters (LES) are used that have

known difficulties in unstructured grids often used close to physical walls. 6) Low-order

numerical methods are employed that are unsuitable for accurate prediction in unsteady

flows and are known to interact adversely with subgrid scale models.

�VMS explores the merger of DG and VMS [46], an approach to LES, as a suitable

framework that has many desirable features while overcoming the limitations of traditional

approaches outlined previously. Let us first examine the two components individually. The

DG discretization is attractive for turbulence simulation for several reasons.

1. High order (spectral) accuracy on arbitrary grids

2. Local hp− refinement capability.

3. Local conservation allows the use of different models in adjoining elements.

4. Highly parallelizable for computational efficiency.

5. Boundary and interface conditions are set weakly through numerical fluxes.

Importantly, since DG methods are ideal for hyperbolic systems or nearly hyperbolic sys-

tems, it holds great potential for high Reynolds number turbulent flows. Now, the VMS [46]

paradigm is desirable for the following reasons.
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1. The variational formulation provides a solid mathematical foundation for turbulence

modeling [28, 46];

2. Variational projection is used for scales separation allowing the extension to complex

geometries straightforward – there are no commutativity or homogeneity issues like

those that arise when using spatial filters (see e.g. [39, 46]);

3. The large scales have no direct model terms. Therefore, the exact solution satisfies

the large-scale equations leading to a consistent method i.e. the solution converges

to DNS in the limit of high resolution.

4. A priori scale separation allows for different modeling approximations on different

scale ranges.

5. A simple constant coefficient Smagorinsky type model acting only on the smallest

resolved scales has been shown to be effective for both the decay of homogeneous

isotropic turbulence [47] and wall bounded flows [48, 71];

6. The modeled equations are considerably simpler than the dynamic subgrid-scale

model [38, 62] making calculations potentially more efficient.

The DG/VMS [29] combination is particularly synergistic, since, the high-order hierarchi-

cal elements are a natural framework for a priori scale identification crucial for multi-scale

modeling. The flexibility engendered by DG/VMS [29] combination relates to the inherent

features of the individual components.

1. DG introduces locality in physical space that allows for a natural coupling of dif-

ferent fidelity models in adjacent regions in the physical domain through numerical

fluxes.

2. VMS introduces locality in spectral space (It may be useful think in terms of Fourier

Modes) that allows a natural coupling of a range of traditional approaches such as

DNS, LES, and RANS on adjacent range of scales.

Overall, we obtain a method that is flexible both from a modeling and computational effi-

ciency perspective while offering mathematical consistency, and high-order accuracy. Im-

portantly, �VMS is amenable to complex geometry crucial for application to engineering

flows (see Figure 2.3).
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1.2 Goals and Accomplishments

The principal goal of the current research is to evaluate the capabilities of �VMS method

for turbulence simulation, in particular, wall-bounded turbulence. In the process, we en-

counter the familiar challenges of resolution requirements related to both reliable statistics

as well as non-linear stability. Additionally, in DG, all interface and boundary conditions

are enforced weakly through numerical fluxes. This allows the solution jumps both at in-

terelement interfaces as well as wall boundaries. We study the effects of the solution jump,

closely related to local resolution, on the quality turbulence statistics. Further, we introduce

SGS modeling through a VMS approach in an effort to reduce resolution requirements. The

principal contributions of the current research effort are listed below.

1. Validation of a DG spatial discretization for wall bounded turbulence, namely fully-

developed turbulent channel flow, with the aid of available DNS [14, 69] for a range

of Reynolds numbers.

2. A detailed investigation of the effects of DG spatial discretization on turbulence

statistics. Thereby, resolution requirements for reasonable low-order statistics in

wall-bounded flows with no explicit modeling is established. In the process, the flex-

ibility of the DG spatial discretization for local hp−refinement that can be exploited

to improve the solution efficiently through a judicious distribution of the required

degrees of freedom is highlighted.

3. The enforcement of Dirichlet boundary conditions through numerical viscous flux al-

lows jumps in the solution at the channel solid walls. This feature enables reasonable

wall shear stress (τw) predictions even with moderate resolutions in the wall-normal

direction (∆y+
w ). Further, using large ∆y+

w values result in significant solution jumps

at the channel walls that lead to poor τw predictions. Here, modifying the numerical

viscous flux to regulate the solution jumps at the wall is found to improve τw pre-

dictions. Thus, demonstrating the potential of the numerical viscous flux to act as a

rudimentary wall-model.

4. Evaluation of two strategies, spectral filtering [61] and polynomial dealiasing [67],

for reducing aliasing errors crucial for non-linear stability is undertaken. In the cur-

rent work, the overall performance of polynomial dealiasing [67] is found to be better

suited for SGS modeling than spectral filtering [61].



5. Implementation of a VMS [46,48] model in the current DG spatial discretization, that

we term �VMS, is validated for the fully-developed turbulent channel flow. Results

in good agreement with reference DNS demonstrate the efficacy of �VMS for wall-

bounded turbulence simulation.

We present a brief outline of the remainder of the thesis. In Chapter 2, we present the de-

tails of the DG spatial discretization and a derivation of the �VMS model equations. Next,

in Chapter 3, we undertake a resolution study that both validates our implementation and

reveals the effects the DG spatial discretization on turbulence statistics. In the process,

we highlight local hp−refinement capabilities of DG that make it attractive for turbulence

simulation. Chapter 4 focuses on the numerical viscous flux and their role in enforcing

boundary and interface conditions that can be exploited for reducing the near-wall resolu-

tion requirements. There, we highlight the potential advantages in enforcing wall boundary

conditions using numerical fluxes. Then, in chapter 5, we present numerical results for

�VMS while simultaneously addresssing the challenges of reduced order modeling in a

high-order method. Here, we explore strategies for improving non-linear stability and their

interaction with the DG spatial discretization in the context of �VMS. In the same chapter,

we present a discussion on the selection of �VMS parameters for the turbulent channel flow

that may be useful for extending �VMS to other flows. Finally, in Chapter 6, we present a

discussion of our results by way of summary and propose future research directions.
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Chapter 2

Formulation and Implementation

In this chapter, we begin with a description of a DG spatial discretization for the Navier-

Stokes equations of motion following the discussion of Collis [29, 30]. We introduce our

choices for the numerical fluxes required to complete the definition of any DG discretiza-

tion. Next, we give a brief overview of the VMS method based on the expositions of

Hughes et al. [46] and Collis [28]. Then, we present the �VMS model equations by intro-

ducing a VMS model in the DG the current spatial discretization. Later, we describe the

model used in this work and additional details of our implementation. Finally, we end this

chapter with a summary that highlights the unique features of the �VMS framework that

make it attractive for turbulence simulation.

2.1 Discontinuous Galerkin Method

We begin with the strong form of the compressible Navier–Stokes equations of motion.

U,t + Fi,i − Fv
i,i = S in Ω, (2.1a)

U(x, 0) = U0(x), (2.1b)

where U = {ρ, ρu, ρe}T is the vector of conserved variables, ρ is the fluid density, u =

{u, v, w}T is the fluid velocity vector, and e = eint + uiui

2 is the total energy per unit mass

(eint is the internal energy). The inviscid and viscous flux vectors in the ith coordinate

direction are Fi(U) and Fv
i (U) defined as

Fi(U) = uiU + p
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where p is the thermodynamic pressure,τij = 2µSij + λuk,kδij , the strain rate tensor Sij =
1
2(ui,j + uj,i) and λ is the bulk viscosity. Also, the heat flux, qi = −κT,i where κ is the

molecular conductivity and T is the temperature. Any source terms present are included in

S.

We solve Eq. (2.1a) subject to the appropriate boundary conditions specific to the prob-

lem of interest. Also, a state equation, such as the ideal gas law to relate the thermodynamic

variables and consititutive laws to define the physical properties such as viscosity and ther-

mal conductivity as functions of the conserved variables provide closure to the system of

equations [41].

The fixed spatial domain for the problem is denoted by Ω, which is an open, connected,

bounded subset of IR3, with boundary ∂Ω. Let Ph be a partition of the domain Ω into N

subdomains Ωe where

Ω̄ =
N
⋃

e=1
Ω̄e and Ωe ∩ Ωf = ∅ for e �= f . (2.3)

Now, we construct the weak form of the equations starting with the strong form of

the compressible Navier–Stokes equations (2.1a). Consider a single subdomain, Ωe, we

multiply Eq. 2.1a by a weighting function, W, that is continuous in Ωe and integrate the

flux terms by parts

∫

Ωe

(

WTU,t + WT
,i (F

v
i − Fi)

)

dx +

∫

∂Ωe

WT (Fn − Fv
n) ds =

∫

Ωe

WTS ds, (2.4)

where Fn = Fini. In the standard Galerkin formulation, where the solution is continu-

ous across the elements, the summation over all the elements in the domain would lead

to the flux terms telescoping to the boundary of the spatial domain ∂Ω. However, discon-

tinuous Galerkin allows the solution and weighting functions to be discontinuous across

element interfaces (see Fig. 2.1) and the coupling of the solution between adjacent ele-

ments is achieved through suitably defined numerical fluxes for both the inviscid flux (Fi)

and the viscous flux (F v
i ). Since the solution is not single-valued at the element interface

the numerical fluxes for the invisicd and viscous flux terms generally assume the following

forms (Fi → ̂Fn(U−,U+)) and (F v
i → ̂Fv

i (U
−,U−

,j ,U+,U+
,j)), respectively.
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Ω1
n

n

Ω2

Ubc

Ω = Ω1 + Ω2

∂Ω

+
−

− +

Figure 2.1: Schematic of DGM discretization

Now, summing over the domain and introducing the numerical fluxes, we obtain the

following

BDG(W,U) =
N
∑

e=1

∫

Ωe

(

WTU,t + WT
,i (F

v
i − Fi)

)

dx +

N
∑

e=1

∫

∂Ωe

WT
(

̂Fn(U−,U+)
)

ds −

N
∑

e=1

∫

∂Ωe

WT
(

̂Fv
n(U−,U−

,j ,U
+,U+

,j)
)

ds

=
N
∑

e=1

∫

Ωe

WTS, ds (2.5)

where the U+ and U− states are illustrated in Fig. 2.1. For a particular element on the

physical boundary, ∂Ω, U+ = Ubc. Meanwhile, for the inter-element boundaries, U+

is obtained from the neighboring element. Thus, all boundary conditions and interface

conditions are set through the numerical fluxes.

While there are a wide range of choices for both the inviscid and viscous numerical

fluxes [18], we have chosen to use a Lax–Friedrichs method for the Euler flux

̂Fn(U−,U+) =
1
2

(

Fn(U−) + Fn(U+)
)

+
1
2

[

λm

(

U− − U+
)]

, (2.6)

where λm is the maximum, in absolute value, of the eigenvalues of the Euler Jacobian

An = ∂Fn/∂U.
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For the numerical viscous flux, we use the method of Bassi and Rebay [6], that we shall

refer to hereafter as the Bassi-Rebay (BR) flux. First, a “jump savvy” gradient of the state,

σj ∼ U,j is computed by solving

N
∑

e=1

∫

Ωe

WTσj dx = −
N
∑

e=1

∫

Ωe

WT
,jU dx +

N
∑

e=1

∫

∂Ωe

WT
̂Unj ds ∀W ∈ V(Ph) (2.7)

for each direction, j, where
̂U ≡ 1

2

(

U− + U+
)

. (2.8)

The BR [6] viscous flux is then computed using

̂Fv
n(U−, σ−

j ,U+, σ+
j ) =

1
2

(

Fv
n(U−, σ−

j ) + Fv
n(U+, σ+

j )
)

. (2.9)

While this method is known to be only “weakly stable” [3], we have not encountered any

difficulties for the problems considered here and this method has been used successfully

in prior studies [6]. The above flux definition, Eq. (2.8), is central to several aspects in

the current work. First, in Chapter 4, we modify the above definition to study the role of

the numerical fluxes in setting Dirichlet boundary conditions. Also, a VMS model, to be

introduced shortly, that is an eddy viscosity model that resembles the physical diffusion

term is implemented in a similar manner, with appropriate modifications consistent with a

multi-scale model.

In setting boundary conditions weakly through the numerical fluxes, one must construct

a state, Ubc, that enforces the appropriate boundary conditions and Atkins [4] provides a

discussion of the important issues involved in selecting Ubc. For the Navier–Stokes calcu-

lations reported here, we use the following approach at the isothermal wall boundaries. We

evaluate Ubc separately for the convective and viscous fluxes.

Let mi be the suitable conditions on the momentum for the Euler flux that are commonly

used [4, 30]. Then the reconstructed state at a wall for the convective flux is

Ubc =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ρ−

ρ− m1

ρ− m2

ρ− m3

ρ−e− + 0.5ρ− (m2
1 + m2

2 + m2
3)

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

. (2.10)
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This state enforces the no-penetration condition which is appropriate for both inviscid and

viscous calculations. For the viscous flux, the no-slip condition is enforced using

Ubc =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ρ−

0

0

0

ρ−Tw/(γ(γ − 1)M2)

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

, (2.11)

where Tw is the prescribed wall temperature, γ is the ratio of specific heats, and M is

the reference Mach number. Now, the discontinuous Galerkin problem statement can be

compactly stated using (2.5), (2.6), and (2.9) as: Given U0 = U0(x), for t ∈ (0, T ), find

U(x, t) ∈ V(Ph) × H1(0, T ) such that U(x, 0) = U0(x) and

BDG(W,U) = (W,S) ∀W ∈ V(Ph), (2.12)

where V(Ph) is a so-called broken space [9]. If V(Ph) is restricted to a space of continuous

functions, then one recovers the classical continuous Galerkin approximation upon using

the consistency properties of the numerical fluxes [18].

The DG method described above can be considered a hybrid between finite-element

and finite-volume methods that has the following salient features that make it a promising

method for turbulence simulation.

1. Local hp−refinement capabilities.

2. Spectral accuracy on arbitrary meshes.

3. Local conservation and the ability to couple different fidelity models on adjacent

elements

4. In particular, the orthonormal hierarchical basis on each element is a natural frame-

work for scale separation that is crucial for multi-scale turbulence models.

Additionally, we draw attention to the potential advantage (see Chapter 4) in setting all

boundary and interelement interface conditions, in DG, through the numerical fluxes.
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2.2 �VMS Formulation

Before we merge the DG method with the VMS approach, let us introduce the VMS

methodology following the discussion of Collis [28] for a typical domain Ω. A more de-

tailed exposition on the method can be found in Hughes et al. [46] and Collis [28]. The

variational form of the Navier-Stokes equations of motion can be formally represented by

B(W,U + ˜U + U′) = (W,F)Q, (2.13)

where W is the vector of test functions from the same function space as the solution (U)

and Q is the space-time domain. Variational projection is used to separate the spatial scales

in VMS instead of filtering and this obviates many of the issues related to the filtering

operation [46]. The projection operation partitions the solution as U = U+ ˜U+U′ where

U are the large scales, ˜U are the small scales and U′ are the unresolved scales. Introducing

the scale decomposition for the test functions, we obtain the equations corresponding to

each scale range as

Large B(W,U + ˜U + U′) = (W,F)Q, (2.14)

Small B(˜W,U + ˜U + U′) = (˜W,F)Q, (2.15)

Unresolved B(W′,U + ˜U + U′) = (W′,F)Q. (2.16)

At this point, it is convenient to introduce definitions of the Reynolds-stress projection and

cross-stress projections [28]. The projection of the unresolved Reynolds stress onto the

large scales is defined as

R(W,U′) = (∇W,U′ ⊗ U′)Q − (W,n · (U′ ⊗ U′))P, (2.17)

where P is the lateral boundary of the space-time domain [28]. Likewise, the projection of

the large/unresolved cross-stresses onto the large scales is defined as

C(W,U,U′) = (∇W,U ⊗ U′ + U′ ⊗ U)Q − (W,n · (U ⊗ U′ + U′ ⊗ U))P. (2.18)

It may be useful to think of each scale as a range of Fourier modes in wavespace, al-

though other bases may be used in practice. In numerical simulations, only a finite number
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Figure 2.2: Multi-scale partitioning of a turbulent energy spectrum and the interaction
between the scales.

of modes are retained leaving the smallest scales of motion unresolved. The interaction

between all the scales in the turbulence, based on the scale decomposition introduced in

VMS, can be seen in Figure 2.2 that shows a typical one–dimensional energy spectrum.

The non-linear interactions of the resolved scales produce scales outside the range of re-

solved scales i.e. unresolved scales (U′) and vice-versa. The equations for the resolved

scales, denoted by ˜U = U + ˜U, can be written as

B(˜W,˜U) = (˜W,F)Q + R(W,˜U) + C(W,˜U,U′) + R(˜W,U′) + C(˜W,˜U′,U′)
︸ ︷︷ ︸

need to model

,

(2.19)

where R and C are the Reynolds stress and cross stress terms that involve the unresolved

scales of motion (see Hughes et al. [46] and Collis [28] for details). In order to obtain a

solution for just the resolved scales (˜U) requires that the terms depending on the unresolved

scales be modeled. Thus, the modeled Navier–Stokes equations are

B(˜W,˜U) = (˜W,F)Q + M(W,U)Q + ˜M(˜W,˜U)Q, (2.20)

where M and ˜M denote the model terms acting on the large and small scales, respectively.

The effect of the unresolved scales on the resolved large scales, in VMS, is considered to

be negligible under the assumption of sufficient scale separation [28, 46, 77, 87]. Thus it
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is reasonable to set M(W,U)Q = 0. Meanwhile, the influence of the unresolved scales

on the small-scales must be modeled. A simple constant coefficient Smagorinksy model,

acting only on the small-scales, has been found to be successful in prior VMS implemen-

tations [48, 71, 78].

Now, introducing the DG discretization and VMS modeling assumptions in equation

(2.20), we obtain the �VMS equations as

BDG(˜W,˜U) = (˜W,F)Q + ˜MDG(˜W,˜U)Q, (2.21)

where ˜MDG(˜W,˜U)Q, the model flux, that is treated in the same manner as the viscous

flux (see equations (2.7), (2.8) and (2.9)) with suitable modifications consistent with the

multi-scale decomposition. To be more explicit, the flux is computed using just the small

scales (˜U), and therefore, the BR flux recast for the VMS model can be written as

N
∑

e=1

∫

Ωe

˜WT
˜σj dx = −

N
∑

e=1

∫

Ωe

˜WT
,j
˜U dx +

N
∑

e=1

∫

∂Ωe

˜WT̂
˜Unj ds ∀W ∈ V(Ph) (2.22)

for each direction, j, where
̂U ≡ 1

2

(

˜U− + ˜U+
)

. (2.23)

The BR [6] viscous flux, for the VMS model, is then computed using

̂Fm
n (˜U−, ˜σ−

j ,˜U+, ˜σ+
j ) =

1
2

(

˜Fm
n (˜U−, ˜σ−

j ) + ˜Fm
n (˜U+, ˜σ+

j )
)

. (2.24)

It remains to define the the model term ˜MDG(˜W,˜U) appearing the (2.21). Since we

have assumed an orthogonal basis, the model represents the projection of the generalized

Reynolds and cross stresses onto the small scales. For incompressible flows, this simplifies

directly to the Reynolds and cross stresses. For compressible flows, there are additional

terms arising from the variable density in the Reynolds stresses as well as from terms in the

energy equation. For a thorough discussion of LES modeling issues in compressible flows,

the interested reader is directed to the article by Martinelli et al. [65] that present results of

a priori evaluation of the models developed for compressible flows.

With this background, we now merge the variational multi-scale method described
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above with the DG method described earlier and present the primal formulation. We de-

note the boundary of the domain Ω as ∂Ω = ΓD ∪ ΓN where ΓD is the portion of the

boundary where Dirichlet conditions are specified and ΓN is the portion of the boundary

where Neumann conditions are set. The element boundary is denoted as Γ = {ΓD, ΓN , Γ0}
where Γ0 are the inter-element boundaries. Let Ω1 and Ω2 be two adjacent elements; let

Γ12 = ∂Ω1 ∩ ∂Ω2; and let n(1) and n(2) be the corresponding outward unit normal vectors

at that point. Let U(e) and F(e)
i be the trace of a state vector U and flux vectors Fi, respec-

tively, on Γ12 from the interior of subdomain Ωe. Then, we define the average 〈 · 〉 and jump

[·] operators on Γ12 as

[Uni] = U(1)n
(1)
i + U(2)n

(2)
i , (2.25a)

[Fn] = F(1)
i n

(1)
i + F(2)

i n
(2)
i , (2.25b)

〈U〉 =
1
2

(

U(1) + U(2)
)

, (2.25c)

〈Fi〉 =
1
2

(

F(1)
i + F(2)

i

)

, (2.25d)

where Fn = Fini.

With this notation, we return to equation (2.21) and introduce a discontinuous Galerkin

formulation of the BDG(W,U) term, defined in equation (2.12), where for simplicity the

resolved scales are now simply denoted W, U. The primal formulation for discontinuous

Galerkin applied to the Navier–Stokes equations is

BDG(W,U) =
∑

Ωe

∫

Ωe

(

WTU,t + WT
,i (F

v
i − Fi)

)

dx

− ∫

Γ

( [

WTni

]

〈̂Fv
i − ̂Fi〉−

〈(DiW)T 〉
[

(̂U − U)ni

] )

ds

− ∫

Γ0

(

〈WT 〉
[

̂Fv
n − ̂Fn

]

−
[

(DnW)T
]

〈(̂U − U)ni〉
)

ds,

(2.26)

where

Fn(U) = Fi(U)ni, (2.27)

Fv
n(U) = Fv

i (U)ni = DnU. (2.28)
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Quantities with a hat ̂· in (2.5) are numerical fluxes that we defined earlier (see Equa-

tions (2.6) and (2.9)). For example, The term ̂Fi(U−,U+) is an appropriate approximate

Riemann flux (see [18] for a description of the various options). The particular choice of

Riemann flux plays an important role in determining the dispersion/dissipation character-

istics of the method [44].

Here, the �VMS model takes the form of a generalized eddy diffusivity that on each

subdomain, Ωe, is given as

M(˜W,˜U) =
∫

∂Ωe

˜WTFm
ne

(˜U) ds

−
∫

Ωe

˜WT
,iF

m
i (˜U) dx, (2.29)

where the model flux Fm
i (˜U) is of the form Fm

i (˜U) = Dm
i (˜U)˜U and the matrix Dm

i (˜U) is

possibly a nonlinear differential operator.

Extending equation (2.29) to a form compatible with discontinuous Galerkin leads to

MDG(˜W,˜U) =
∫

Γ0

(

[˜WT ]〈Fm
n (˜U)〉

)

+
∫

∂Ω

(

˜WTFm
n (˜U)

)

− ∑

Ωe∈Ph

∫

Ωe

˜WT
,iF

m
i (˜U) dx, (2.30)

which clearly simplifies to a classical weak Galerkin approximation for continuous func-

tions. On inter-element boundaries, an averaged flux is used while on the domain boundary

one obtains a weighted integral of the modeled turbulent flux across the boundary. This last

integral marks a dramatic difference between discontinuous Galerkin and standard Galerkin

approximations [28, 46] on solid surfaces.

In general, the weighting functions for velocity at wall boundaries using traditional

Galerkin forms are set to zero since they are assumed to satisfy the Dirichlet conditions.

This precludes a means to enforce the flux of modeled turbulent stresses to be zero at solid

walls. However, in discontinuous Galerkin, since all interface and boundary conditions

are set through numerical fluxes, specifically boundary flux integrals, it allows the weak

enforcement of zero turbulent flux at solid walls by setting the second integral in (2.30)

to zero on solid surfaces. Moreover, this integral can be set to particular values on inflow
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domains to represent the inflow of unresolved turbulent stress if desired.

From (2.30) we see that one can easily vary the partition between large and small scales

on different subdomains. Likewise, the particular model for the turbulent flux can be altered

on each domain. Thus, the model term can be written as

MDG(˜W,˜U) =
∫

Γ0

(

[˜WT
e ]〈Fme

n (˜Ue)〉
)

+
∫

∂Ω

(

˜WT
e Fme

n (˜Ue)
)

− ∑

Ωe∈Ph

∫

Ωe

∂ ˜We

∂xi

T

Fme
i (˜Ue) dx, (2.31)

where the modeled turbulent flux and the solution space partitioning are dependent on the

element index e. Across element boundaries, the first integral communicates the unre-

solved turbulent flux between neighboring elements thereby automatically converting from

one partitioning to another and from one turbulent flux model to another. It is this novel

capability of the �VMS that makes it particularly attractive for turbulence modeling in com-

plex flows (see Figure 2.3).

2.3 VMS Model Description

Now, we present specific choices for the models used in this work. The standard eddy

diffusivity model from (2.29) can be put in this form

Fm
i (˜U) = 2˜νT

⎡

⎢

⎢

⎢

⎣

0

(∇s
˜u):i

˜T,i/Prt

⎤

⎥

⎥

⎥

⎦

, (2.32)

where ∇su is the symmetric part of the gradient tensor [i.e. (∇su)ji = (ui,j + uj,i)/2] and

(∇su):i is the ith column of this tensor. The Smagorinsky eddy diffusivity, based on the

“small-small” VMS model of Hughes et al. [47, 48], defined on the small-scales is

˜νT = (CS
˜∆)2 |∇s

˜u| , (2.33)
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where CS is the Smagorinsky coefficient that is 0.1 unless otherwise stated, ˜∆ is a length

scale representative of both the mesh (h) and local polynomial order (p) for the small scales

defined as
˜∆2 = (LxLz)/(NxNz(p + 1)2), (2.34)

where Lx and Lz are the domain sizes in the streamwise (x) and spanwise (z) directions,

respectively (see Figure 3.1). Similarly, Nx and Nz are the number of elements in the

streamwise and spanwise directions, respectively. We note in passing that we use a Van

Driest wall damping function [36] to mitigate possible timestep restrictions arising from

the use of a explicit time advancement. Next, the Prt is the turbulent Prandtl number

that is set to a value of 1.0 for all the cases considered here. Finally, ˜T,i is the gradient

of the small-scale temperature field used to form the eddy diffusivity term to model the

SGS heat flux in the energy equation. In practice, scale-similar and mixed-models appear

advantageous for compressible flows [65] and VMS versions of these models can also be

devised. And therefore, this is a potential course for future work.

In order to complete the description of any VMS model, we need to specify a partition

of the resolved scales. In the current work, we use a two-level partition that divides the

resolved scales into large- and small-scales that is specified by a modal cutoff Le on each

element. For a given polynomial order on a element pe > 0, the partition bifurcates the

polynomial space, in each direction, as Ppe(Ωe) = {0, . . . , Le, . . . , pe}, where the modes

less than Le are considered large scales while the remaining modes including Le form the

small scales.

2.4 Discretization and Implementation

For every element Ωe ∈ Ph we define the finite-dimensional space Ppe(Ω̂) of polynomials

of degree ≤ pe defined on a master element Ω̂. Then

Ppe(Ωe) =
{

φ|φ = φ̂J−1
Ωe

, φ̂ ∈ Ppe(Ω̂)
}

, (2.35)

where JΩe is the Jacobian of the transformation of element Ωe to the master element and

Vp(Ph) =
(

N
∏

e=1
Ppe(Ωe)

)m

, ⊂ V(Ph) (2.36)
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where m is the number of conserved variables, m = 5.

Thus, the semi-discrete discontinuous Galerkin method is: Given U0 = U0(x), for

t ∈ (0, T ), find Uh(x, t) ∈ Vp(Ph) × H1(0, T ) such that

BDG(Wh,Uh) = MDG(˜Wh,˜Uh) + (Wh,S) ∀Wh ∈ Vp(Ph). (2.37)

In practice, one can use a variety of polynomial bases to approximate the functions in

(2.37) which offer different advantages and disadvantages. A number of options are pre-

sented in Atkins [63] including monomials, tensor products of Legendre polynomials, and

warped product bases introduced by Dubiner [35]. For the VMS method, the use of orthog-

onal bases greatly simplifies the form of the unclosed terms in the equations. Therefore we

utilize the family of orthogonal, hierarchical bases formed from tensor products of Jacobi

polynomials as described in Karniadakis and Sherwin [53] which are supported in a wide

range of elements types in two- and three-dimensions.

2.5 Summary

The promise of the merger of VMS and DG spatial discretization that we term Local VMS

(�VMS) can be attributed to the locality introduced in spectral and physical space by the

former and the latter, respectively. This combination provides a framework for coupling,

via numerical fluxes, different fidelity models on adjacent elements. And conceptually, this

permits the use different models on different scale ranges. To be more explicit, the VMS

approach to LES introduces no explicit modeling on the largest resolved scales, a feature

attributed to its success [47,48,71,76,78], while a SGS scale model is active on the smallest

resolved scales. This can be thought of as coupling of DNS or no-model on the large scales

with a SGS model on the small scales.

Now, using DG, we extend this concept even in physical space. As an illustration of the

the potential of �VMS, let us consider the case of a airfoil (can be any bluff body) in cross-

flow at sufficiently high Reynolds number (see Figure 2.3). With the current framework,

we can use hp−refinement to reduce the degrees of freedom away from the surface of the

airfoil and wake. Next, one can employ �VMS in the region near the surface of the airfoil

to represent the boundary layer and turbulent wake (�VMSb and �VMSd in Figure 2.3).

Further, in regions where turbulence is not active, the model can be turned “off” to recover
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Figure 2.3: Illustration of �VMS modeling capabilities for flows in complex geometries:
U∞ freestream velocity; �VMSa, model for laminar boundary layer; �VMSb, model for a
turbulent boundary layer; �VMSc, model for region outside the boundary layer; �VMSd,
model for a turbulent wake; Boundary separating different �VMS modeling zones.

DNS (�VMSa and �VMSc in Figure 2.3). This can be accomplished in VMS simply by

selecting the partition (Le) to have all the resolved scales in the large scale space.

Moreover, it is likely that the large scales for the boundary layer are different from that

in the wake region (see Figure 1.1). First, using the local refinement capabilities, we select

a mesh and polynomial order to sufficiently represent the features of the boundary layer

and wakes. Now, �VMS allows the parameters such as the modal partition Le to separate

the large and small scale spaces to be specified individually on each element. And, for

the flow under consideration, the important large scales in different regions of the flow

are vastly different in character. Therefore, by allowing the specification of the model

parameters locally based on the knowledge of physical structures in the flow, if available,

can potentially lead to improved modeling of the flow. In fact, conceptually, one can even

change the model in different regions in the flow. Overall, fully exploiting �VMS offers

the flexibility needed to accurately model flows in a efficient manner even in complex

geometries. As a first step towards simulations just described, we test the capabilities of

the method in a fully-developed turbulent channel flow.



Chapter 3

Turbulent Channel Simulation

In this chapter, we validate our implementation by comparing numerical results for the tur-

bulent channel flow, obtained using the DG method described in Chapter 2, with available

DNS [14, 69]. In the process, we study the effects of the DG spatial discretization on the

quality of turbulence statistics obtained. Also, since all interface conditions including the

physical boundary conditions are enforced through the numerical fluxes, solution jumps

exist even at the channel walls. Further, the solution jumps are known to be related to the

local resolution [19]. Here, we focus on the solution jumps at the channel wall where the

local resolution is often low and the magnitude of jumps are likely to be significant. Thus,

we attempt to gain insight into the effect of this unique feature in DG on turbulence statis-

tics. We begin with a brief description of the planar turbulent channel before proceeding to

the numerical results for a range of Reynolds numbers from Reτ = 100 − 395.

3.1 Turbulent Channel Flow–Preliminaries

Consider the fully-developed turbulent flow in a plane channel with coordinates x = x1 in

the streamwise direction, y = x2 in the wall-normal direction, and z = x3 in the spanwise

direction (see Figure 3.1). The reference length scale is the channel half-height δ and the

reference velocity is the friction-velocity uτ ≡
√

τw/ρ in the initial condition, where ν is

the kinematic viscosity, τw is the shear stress at the wall (drag at the wall), and ρ is the fluid

density. Thus, the reference Reynolds number is Reτ ≡ uτδ/ν. In reporting our results,

we frequently present flow quantities in wall units (or inner scaling) with t+ = tu2
τ/ν,

x+
i = xiuτ/ν and u+

i = ui/uτ . The flow is assumed to be periodic in the streamwise

and spanwise directions where the box size is selected so that the turbulence is adequately

decorrelated in both directions.

As a first step towards utilizing DG for turbulent flows, we have performed coarse grid

DNS at Reτ = 100 with a centerline Mach number of Mc = 0.3 so that comparisons can be

made directly to prior incompressible results (see e.g. [54, 69]). Following Coleman et al.

[27], we use a cold, isothermal wall so that internal energy created by molecular dissipation

25



26 Chapter 3. Turbulent Channel Simulation

x

y

z

2δ

Lx Lz

Figure 3.1: Illustration of the planar channel with the contours of wall-normal velocity
obtained by Chang [14]

Figure 3.2: Cross-stream (z–y) quadrature grid for an 8 × 8 × 8 stretched mesh with
p = {5, 5, 4, 3}, this figure first appeared in the article by Collis [30]

is removed from the domain via heat transfer across the walls, allowing a statistically steady

state to be achieved. While using moderate resolutions, the bulk mass flow is held constant

by the addition of an x1-momentum source. However, at coarse resolutions additional

source terms are required in both the continuity and energy equations to hold the bulk

density and the average total energy constant.

The computational domain is (4π, 2, 4π/3) for Reτ = 100 and Reτ = 180, while for

Reτ = 395 a smaller domain of (2π, 2, 2π/3) is sufficient. Exploiting the flexibility of the

DG method, we use both h- and p-refinement to more efficiently resolve flow features near

the wall. In particular, two types of wall-normal distributions of elements are investigated:
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a uniform mesh and a stretched mesh. For the stretched mesh, the grid points are given by

yj =
tanh(cs(2j/Ny − 1))

tanh cs
+ 1 , j = 0, 1, . . . , Ny (3.1)

where Ny is the number of elements in the wall-normal direction and cs is the stretching

factor in the range 1.0 < cs < 2.0. Unless explicitly stated, we use the stretched mesh.

In addition to local h-refinement using the stretched mesh, we also utilize local p-

refinement by reducing the polynomial order away from the wall. Figure 3.2 shows a typ-

ical crossflow quadrature grid for the stretched mesh using 8 elements in the wall-normal

direction (8 × 8 in the planar directions (x and z)). Moving from the bottom wall to the

top wall, the element order varies like: {5, 5, 4, 3, 3, 4, 5, 5} resulting in a total of 79,488

degrees of freedom as opposed to 110,592 for a uniform polynomial order, p = 5. Note that

the flexibility of the DG method makes it possible to coarsen simultaneously in all three

coordinate directions as one moves away from the wall. In all cases, we use a third-order

TVD-RK time advancement with ∆t ≤ 0.0001. This time step is a factor of 10 smaller

than that typically used in our incompressible code [32] because the incompressible code

treats wall-normal viscous terms implicitly.

3.2 Numerical Results

First, we undertake a detailed resolution study at Reτ = 100 with different polynomial

orders (p) using the following mesh topologies: 4×4×8, 8×4×8, 4×8×8, and 8×8×8

(Nx × Ny × Nz) where Nx, Ny, and Nz are the number of elements in the streamwise,

wall-normal, and spanwise directions, respectively. The meshes are stretched in the wall-

normal direction unless otherwise stated. The choice of the meshes used in this study is to

highlight the effects of resolution in the planar and wall-normal directions as well as the

interaction between the two.

1. For convenience in presenting the results at Reτ = 100, we refer to the following

meshes, 4×4×8, 8×4×8, 4×8×8, 8×8×8, and 8×8×8 uniform y−direction,

as A, B, C, D, and E, respectively.

2. Also, since we consider different polynomial orders on each of the meshes above,

in referring to a particular combination of a mesh using a polynomial order p, we
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employ the following notation that we illustrate by example – a mesh using 4×4×8

(A) with p = 3 will be referred to as A3 and so on.

A summary of the parameters used in the simulation along with a brief result summary

for each mesh can be found in Tables 3.1, 3.2, 3.3, and 3.4. The parameters presented

in the table are: p, the polynomial order; ∆y+
w , the resolution based on the collocation

grid in viscous units at the wall; d.o.f., the total number of degrees of freedom; Slip, slip

in the streamwise velocity averaged over the plane (x − z plane) at the wall; τw and uτ =
√

τw/ρ, the wall shear stress and the friction velocity, respectively. Sometimes, in reporting

resolutions in the wall-normal direction, we denote ∆y+
m as the minimum height of an

element, usually the element adjacent to the channel walls. Also, throughout the following

discussion, unless otherwise stated, slip will refer to the definition give above. Primarily,

when discussing the magnitude of the slip, we compare it to the maximum streamwise

velocity at the center of the channel that is approximately 17, 18, and 20 for Reτ = 100,

180, and 395, respectively.

In general, we present profiles of meanflow, turbulence intensities (rms), Reynolds

stress, viscous, and total (Reynolds + viscous) stress. The energy spectra in the streamwise

and spanwise directions are also presented as additional indicators of resolution quality.

Before we examine the numerical simulations, it may be useful to recall the character-

istic features of the fully-developed turbulent channel flow gleaned from DNS data and/or

experimental observation [5, 54, 55, 69, 85].

1. The direction of the flow is streamwise (positive x direction) and the meanflow in the

spanwise and wall-normal directions are negligible.

2. The physical structures in the flow have well-defined length scales: ∆x+ ≈ 400,

∆z+ ≈ 100 (streak spacing) and cylindrical coherent structures have radius, r+ ≈
15.

3. The location of the maximum turbulence production i.e. urms peak is y+ ≈ 20.

Therefore, a possibly important length scale in the wall-normal direction is ∆y+ ≤
30 that corresponds well with the diameter of the near-wall coherent structures.

4. Viscous effects dominate for y+ ≤ 5 and thereafter Reynolds stress are significant

and both viscous and Reynolds stresses are comparable (5 < y+ < 30). In this range,

there exists a point where both viscous and inertial effects are equal that corresponds
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well with the peak turbulence production (y+ ≈ 20). Beyond y+ > 30, the inertial

effects dominate and viscous effects are negligible.

3.2.1 Low Reynolds Number

Let us begin with a study using p = 3 for the meshes A-E at Reτ = 100. The simulation

parameters and results summary for each individual mesh using different polynomial orders

are reported in Tables 3.1, 3.2, 3.3, and 3.4. It is important to point out the salient features

of the meshes selected that may be useful in interpreting the results presented below.

1. Cases A3, B3, and E3 share a similar near-wall resolution ∆y+
w ≈ 4.3 (∆y+

m ≈ 25).

2. Cases A3 and C3 share the same planar resolution (x − z plane).

3. Cases B3, D3, and E3 share the same planar resolution (x − z plane).

4. Finally, Cases C3 and D3 have a better near-wall resolution (∆y+
w ≤ 2.5, ∆y+

m ≤ 15)

compared with A3, B3, and E3.

5. The location of the element interfaces for the bottom half the channel in the wall-

normal direction (y) for the A and B meshes are as follows, y+ ≈ {25, 100}. For C

and D, y+ ≈ {8, 25, 56, 100}. Finally, for the E mesh, y+ = {25, 50, 75, 100}

The meanflow and rms profiles for A3, B3, C3, and D3 are presented in Figure 3.3. The

meanflow for D3, shown in Figure 3.3(a), produces the best agreement with the reference

DNS [14] while all the other cases show poor agreement with the reference. A3 and B3

severely overpredict the wall shear stress while C3 significantly underpredicts τw. We

note here that the meanflow profile of A3 is very similar to that of B3 for y+ ≤ 25, but,

the meanflow profile for these two cases differ significantly thereafter (y+ > 25). It is

important to note the presence of slip in the meanflow for all the cases considered thus

far (refer to Tables 3.1, 3.2, 3.3, and 3.4 for values of slip in the meanflow). This is a

unique feature of the DG solutions that allow the solution to be discontinuous at element

interfaces. In the current context, the slip in the meanflow represents the difference between

the imposed no-slip boundary condition and computed solution at the channel solid walls.

Now, consider the rms profiles for the above cases that is plotted in Figure 3.3(b). Again,

the best overall agreement with DNS [14], for all the components of turbulence intensity,

is obtained using D3. As seen with the meanflow profile, the remaining cases show poor
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agreement. And, while the profiles for A3 and B3 are similar, the streamwise component

of C3 is dramatically different from the latter two. However, we note the differences in

the rms profiles for all the cases at y+ > 30 are not as dramatic as the near-wall region

(y+ ≤ 30). As mentioned earlier for the meanflow, there are some features on this plot

that are not generally seen in traditional discretizations that enforce the Dirichlet boundary

conditions strictly [14]. Note the non-zero contributions in the rms quantities at the wall

(y+ = 0). On the rms profiles, let us focus on the u component, A3 and B3 contain a larger

slip when compared with C3 and D3. In fact, under close scrutiny one can observe that slip

in urms for C3 (∆y+
w ≈ 1.4) is less than D3 (∆y+

w ≈ 2.3) in Figure 3.3(b).

Now, returning to the slip in the meanflow, A3, B3, and D3 have a negative value while

C3 has a positive slip. Further, the absolute value of slip for A3 and B3 is considerably

higher than D3. These results are indicative of an inverse relationship between the magni-

tude of solution jumps ( see Figure 3.3(b)) and the near-wall resolution (∆y+
w ). This view is

supported by the large value of slip for E3 that shares a similar near-wall resolution (∆y+
w )

with A3 and B3. It is well-known that the jumps in the DG solution are related to local res-

olution [19]. For the channel flow, the results above indicate that the y−direction resolution

may play a dominant role in determining the amount of slip at the wall.

Also, we notice a close correspondence of significant negative slip in A3 and B3 with

overpredictions in the wall shear stress (see Figure 3.44). An auxillary trend that we draw

attention to is the variation of slip with polynomial order. The slip in the streamwise veloc-

ity at the wall transitions from a relatively large negative value at A3 to positive value at A6

and subsequently to a extremely small value at A8 (refer to Table 3.1). A similar trend can

seen when going from B3 to B6 (refer to Table 3.2). While this trend is present even in the

C an D meshes, the relatively high wall-normal resolution makes it less noticeable (refer

to Tables 3.3 and 3.4). In fact, the slip is positive even at C3 that continues to decrease in

absolute value with increasing polynomial order.

Next, we examine the energy spectra in the x− and z− directions, shown in Figures 3.4

and 3.5, for the cases under consideration. Note the streamwise spectra for A3 and C3 span

a shorter range of wavenumbers (4 elements in x−direction). Let us examine Figure 3.5

and focus on the streamwise component for any visible trends. The spanwise spectra where

all the cases share the same resolution may not adequately highlight trends present. Clearly,

A3 and C3 that share the same planar resolution produce a similar shaped spectra but with

A3 (with a larger ∆y+
w ) exhibiting a distinctly higher energy content compared with C3. A
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similar trend exists for B3 and D3 that is less prominent likely due to a smaller difference

in ∆y+
w compared with the difference in ∆y+

w between A3 and C3.

Significantly, the effects of using coarse grids is clearly seen in the energy spectra. The

pile up of energy, seen at the higher wavenumbers, is mainly a result of the absence of

viscous dissipation scales [56]. Unfortunately, very high resolutions (DNS) are needed to

adequately resolve these scales in the turbulent channel flow [69]. The general function

of these scales is to dissipate the energy, transferred from the larger scales to the smaller

scales through non-linear interactions, as heat. Therefore, in the absence of these scales,

one can expect the large scales to have a higher energy content than usual.

Also, practical turbulence simulation using the Navier-Stokes equations of motion in-

volve evaluation of non-linear terms using a finite representation. This operation results in

aliasing errors where the overall effect of aliasing in the solution depends on the parameters

of the numerical scheme [13,58]. To be more explicit, the effect of aliasing errors is closely

related to the spatial discretization [58]. While using particularly coarse grids with a low

order method, aliasing errors are known to damp turbulent fluctations [58]. On the other

hand, aliasing errors employing low resolution with high order methods often render the

simulation unstable [58]. At finite resolutions, these low resolution effects are handled by

introducing a SGS model often in conjunction with a dealiasing mechanism [13, 67, 84].

Thus far, we have employed no dealiasing strategy and/or introduced explicit SGS mod-

eling in any of the simulations. However, the energy spectra (see Figure 3.4) indicates

the need for such mechanisms in the cases presented above (we introduce modeling and

dealiasing in Chapter 5).

Finally, consider the profiles of Reynolds stress, shown in Figure 3.6(a), where D3

produces the best overall agreement with the reference [14]. Here again, we point out that

the non-zero Reynolds stress contribution at the wall is a result of the current boundary

conditions enforcement. Further, the largest deviation from the reference Reynolds stress

profile, shown in Figure 3.6(a), is observed with A3 and B3. Since both these cases employ

a large ∆y+
w , this suggests the Reynolds stress predictions may be sensitive to the resolution

in the wall-normal direction.

Meanwhile, the viscous stress profiles, shown in Figure 3.6(a), with noticeable jumps

at (y/δ ≈ 0.25 i.e. y+ ≈ 25) for A3 and B3 are indications of the low y−direction reso-

lution employed for these cases. The relatively smoother profiles i.e. modest interelement

jumps for C3 and D3, that use a better resolution in the wall-normal direction, suggest the
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resolutions used in these cases are sufficient to reasonably resolve the viscous sublayer.

However, the thickness of the viscous sublayer for C3 is very prominent compared with

the reference consistent with the low drag predictions. Meanwhile, the viscous stress pro-

files for A3 and B3 are diminished compared with the reference, consistent with the high

τw obtained for these cases. The good correspondence of D3 with the reference viscous

stress and total stress profiles (D6) indicates the overall resolution (h and p) in this case is

adequate to reasonably represent the near-wall region.

The ability to obtain reasonable estimates for τw using ∆y+
w ≈ 2.3 (D3 with ∆y+

m ≈ 13)

is noteworthy. Traditional discretizations even with an explicit SGS model require ∆y+
w ≤

1.0 [14, 15]. We believe this can be attributed, in part, to the manner of boundary condi-

tions enforcement. The imposition of the no-slip conditions through the BR flux, allowing

solution jumps, is effective in “capturing” part of the boundary layer in the jump at the

channel wall. Now, we recognize that the jumps in the solution are closely related to the

local residual (in the interior of the element) [19]. The presence of a large solution jump

is indicative of a relatively low local resolution. In our experience with other discretiza-

tions [14,15], we have observed that imposing hard boundary conditions with low near-wall

resolutions leads to incorrect τw predictions, and therefore, poor low-order statistics. The

strict enforcement of the no-slip conditions employing resolutions that are inadequate to

sufficiently represent the viscous wall region may explain the poor τw predictions observed

in traditional discretizations. Here, by contrast, allowing the solution to jump at the bound-

ary, we believe, simulates the appropriate influence of wall commensurate with the local

resolution enabling reasonable τw prediction even with moderate ∆y+
w values.

Let us now consider the effect of polynomial enrichment on these meshes. A com-

parison of the meanflow profiles for A4, B4, C4, and D4 is presented in Figure 3.7(a).

Predictably, we see an improvement in the meanflow for A4, B4, and C4. However, B4

and C4 still overpredict and underpredict the drag, respectively, while D4 shows the best

agreement with the reference [14]. Meanwhile, a dramatic improvement is seen with A4

that produces a meanflow profile that nearly matches that of D4.

Next, Figure 3.7(b) shows the plot of the rms profiles, and again, improved predictions

compared to the p = 3 simulations is observed in all the cases. The authors note difference

between the rms profiles, in the near-wall region y+ ≤ 30, obtained using 8 (stretched)

elements versus 4 (stretched) elements in the wall-normal direction. This hints at the effec-

tiveness of hp−refinement over pure p−refinement in improving solution quality.
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Now, it is interesting to note the rms profiles for A4 are nearly an average of the profiles

obtained using B4 and C4. Recall that A4 shares the same ∆y+
w as B4, and simultaneously,

the planar resolution of A4 is identical to C4 (refer to Tables 3.1, 3.2, and 3.3). The better

agreement of low-order statistics with DNS obtained for A4 using fewer degrees of freedom

compared to B4 and C4 may be attributed to a complex interaction of planar and wall-

normal direction resolution effects (we elaborate on this issue in the discussion to follow).

As before with p = 3, we examine the energy spectra in the x− and z− directions

obtained using A4, B4, C4, and D4 that are plotted in Figure 3.8. Now, let us focus on

Figure 3.9 where we plot just the u component for clarity. Note a similar trend in the energy

spectra as the p = 3 cases. Here, the difference in resolution in the y−direction between A4

and C4 is identical to that which exists between B4 and D4. The current trend suggests that

low resolutions in the wall-normal direction potentially lead to increased energy content

in the resolved scales. Physically, a poorly resolved viscous wall region may result in the

near-wall coherent structures that are not adequately influenced by viscous effects. This

diminished viscous damping may lead to an artificially high energy content in these scales.

This can translate to an overprediction of the wall shear stress, clearly seen in B4.

Interestingly, C4 with a higher y−direction resolution has a lower energy content com-

pared to the other cases using p = 4, suggesting that with the current mesh and polynomial

order – the overall effect of low planar resolution is a dissipative one [19, 44, 58]. Now,

it is likely from these results that A4 benefits from an interaction of the planar resolution

effects seen in C3 and C4 along with the wall-normal resolution effects observed in B3 and

B4. Recall a noticeable departure of the meanflow profile for A3 when compared to B3 in

Figure 3.3(a). The difference may be the result of difference in the planar resolution be-

tween A3 and B3. While, B4, C4, and D4 show improvements consistent with an increase

in resolution, the improvements in A4 may be attributed to the arguments presented above.

Now, even with D4 that employs the highest overall resolution, the energy spectra ex-

hibits the effects of aliasing and SGS. Meanwhile, all the stress profiles, seen in Figure 3.10,

are in better agreement with the reference from p = 3. It is important to note that an uniform

increase in the polynomial order leads to refinement in all three directions simultaneously

indicated by a doubling in the number of degrees freedom when going from C3 to C4 (see

Table 3.3). It is for this reason that there is a dramatic improvement in the results going

from p = 3 to p = 4. Overall, the reasonable agreement with the reference obtained us-

ing D4 suggests that it has sufficient resolution in the planar and wall-normal directions to
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minimize the obvious adverse efects of low resolution.

To make this discussion concrete, let consider solutions obtained with A-D using p = 6.

A comparison of meanflow profiles for A6, B6, C6, and D6 is shown in Figure 3.11(a)

where except B6, that continues to overpredict τw, all the cases are virtually indistinguish-

able from each other and in good agreement with the reference [14]. The rms profiles,

shown in Figure 3.11(b), indicate excellent agreement of the profiles for C6 and D6 with

the reference DNS [14]. Meanwhile, reasonable agreement with DNS is seen for A6 and

B6. We note here that the jumps in the solution at the wall, significant at lower resolutions,

are considerably diminished for C6 and D6 using a higher y−direction resolution. Mean-

while, the presence of jumps even at p = 6 for A6 and B6 confirms our earlier observation

that slip at the wall is very closely related to the wall-normal resolution.

The higher energy content than the reference in the energy spectra, shown in Fig-

ure 3.12, is most likely the result of the SGS effects that are known to affect the scales

closest to the grid cutoff [36, 82]. The combination of SGS and aliasing (that may be

still be present) is reflected only in a mean sense seen most clearly in the difference in the

meanflow profile from the reference in the core of the channel (see Figure 3.11(a)). This in-

dicates the need for strategies to effectively counter these effects even at these resolutions.

In fact, all the reference DNS [14, 69] used in the work to validate our implementation

employ the 3/2−rule [13] in the planes to remove aliasing effects even though they are

computed using higher resolutions than those considered in this study. Finally, the stress

profiles, shown in Figure 3.14 for the all the cases except B6 are in good agreement both

with each other and with the reference [14].

Thus far, through conventional wisdom and with the aid of the turbulence statistics

extracted, we are able to explain the convergence of results using A, C, and D. However,

the result obtained using Case B (see Figures 3.35 – 3.37) needs special attention, since we

suspect the reason may be unique to the DG spatial discretization. This relates to the setting

of interface conditions at interelement boundaries through the numerical fluxes. It is likely,

that using a poor near-wall resolution (∆y+ ≥ 1.6 wall units) along with a relatively high

planar resolution (low dissipation properties [19, 44]) leads to poor interface conditions.

Notice the relatively large jump at the first interelement boundary (in the y−direction) in

the viscous stress profile in Figures 3.6, 3.10, and 3.14. Although A3 experiences a similar

interface condition, seen by a jump in the corresponding viscous stress profile in Figure 3.6,

it is also influenced by a dissipative effect of the low planar resolution in the interior that
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can explain the difference in the meanflow compared with the B3 case (see Figure 3.3(a)).

In order to clearly establish the need for strategies to account for the combined effect of

SGS and aliasing errors. We present a comparison of results obtained using A4 and A8. The

meanflow profile for A8 case is shown in Figure 3.15. While producing a better agreement

with the reference DNS than A4, the A8 case still slightly overpredicts τw. As before, the

rms profiles, seen in Figure 3.15(b), obtained using A8 are in excellent agreement with the

reference DNS compared with the A4 case. Similarly, the Reynolds, viscous, and total

stress profiles for A8 are virtually indistinguishable from the reference case. However, as

seen in D6, the energy spectra at the highest wavenumbers most susceptible to the finite

resolution effects contain more energy than the reference DNS [14]. This suggests the

need for an active mechanism to remove the excess energy at the highest wavenumbers.

Fortunately, the presence of aliasing and/or SGS effects does not have a profoundly adverse

effect on the low-order statistics at these resolutions.

Given the well-known importance of spanwise resolution in wall-bounded turbulent

flows [54,69], we now focus attention on the spanwise direction. The simulations discussed

so far used 8 elements in the spanwise direction and reasonable solutions were obtained

with p ≥ 3, given sufficient h resolution. With 8 elements across the channel, each element

is approximately 50 wall-units in width, which roughly corresponds to half the typical

streak spacing [54, 55, 85]. To further explore the influence of spanwise element size,

we also performed simulations on a coarse 4 × 4 × 4 mesh using p = 3. In this case, the

spanwise element size is approximately 100 wall-units which indicates that both a low- and

high-speed streak are contained within one element. Consequently, the elements are larger

than the near-wall vortices and our experience with DG in two-dimensional simulations

indicates that high polynomial orders (p > 7) are required to adequately resolve a vortex

within a single element. Thus, not surprisingly, this simulation was non-linearly unstable

due to inadequate representation of the viscous dissipation scales.

For p < 3, the solutions are similar to those obtained with traditional low-order upwind

finite-difference and finite-volume methods where numerical dissipation and the combined

effects of low resolution tend to suppress turbulent fluctuations [44, 58]. Comparison of

solutions obtained using C2, D2, C4, and D4 are plotted in Figures 3.18, 3.19, and 3.20.

The meanflow profiles, plotted in Figure 3.18(a), show a significant underprediction in the

drag for both C2 and D2. The rms profiles for both C2 and D2 show trends consistent with

the low planar resolution similar to that observed with C3. Meanwhile, the energy spectra
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and stress profiles, shown in Figures 3.19 and 3.20, exhibit solutions consistent with high

levels of numerical dissipation.

Now, the dramatic reduction in numerical dissipation with increase in resolution in the

streamwise direction suggests the likely source of this dissipation is the Euler flux. Since

the meanflow is in the streamwise direction, it is possible that the “upwinding” effect of

the Euler flux has a significant contribution in this direction similar to Streamline Upwind

Petrov-Galerkin (SUPG) finite element methods [11]. Importantly, the associated numer-

ical dissipation is significantly decreased with increase in resolution (h and/or p). Recall

that we use the Lax–Friedrichs flux which is known to be highly dissipative so that these

observations may be altered if a different numerical flux is used and this is an interesting

area for future research. However, the key point is that for elements with ∆x+ ≤ 200,

∆z+ ≤ 50, and ∆y+
w ≤ 2.0 (∆y+

m ≤ 15) using p ≥ 3 results in solutions in reasonable

agreement with DNS without indication of adverse effects of low resolution.

3.2.2 Moderate Reynolds Number

We now extend the DG spatial discretization study to higher Reynolds numbers. We first

study the results for Reτ = 180 obtained using two meshes 8 × 8 × 16 and 16 × 16 × 16.

The details of the parameters used in the the simulation can be found in Tables 3.5 and 3.6.

We examine the results obtained using p = 3, p = 4, and a variable polynomial distri-

bution in the wall-normal direction as p = {5, 5, 4, 3, 3, 4, 5, 5} (see Figure 3.2). Before we

present the results, we note that the element interfaces using this mesh in the y−direction

for one half of the channel are located at y+ ≈ {15, 45, 101, 180}. The resolution for this

mesh with ∆x+ ≈ 280, ∆z+ ≈ 47, and ∆y+
m ≤ 15 is slightly better in all three directions

compared with the A mesh at Reτ = 100. In fact, the resolutions obtained are closer to

the C mesh at Reτ = 100. Thus, the meanflow and rms profiles, shown in Figure 3.21,

using p = 3 and p = 4 follow a similar trend as the C mesh at Reτ = 100 (see Fig-

ure 3.32). Although, the underpediction in the τw does not appear to be as severe as C3 and

C4 at Reτ = 100. This may be a result of improved resolution in the streamwise direction

(∆x+ ≈ 280 ≤ 314).

Here, we note the improvement in the rms profile, seen in Figure 3.21(b) especially for

the streamwise component, while using the variable polynomial order case that uses p = 5

close to the wall. This feature of DG that allows us to improve local resolution can be

exploited to improve efficiency. Also, from the Reτ = 100 study, local improvement of
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the resolution in the near-wall region may lead to better interface conditions to the interior

solution. Importantly for the channel flow, the coarsening of the grid away from the wall

does not hamper the near-wall results. Although, using coarse grids the solution at the

center of the channel using p = 3 may experience a stronger influence of the effects of

under-resolution than the near-wall region.

Equally, the interface conditions, for the variable polynomial order case, will also be

improved over the uniform p = 3 case. This is a subtlety of numerical simulation related to

dominance of errors (planar versus wall-normal direction resolution effects). Fortunately,

the better meanflow profile agreement with DNS for the variable polynomial order case,

compared with the uniform p = 3 and p = 4 cases, suggests that improved interface

conditions may have a more dominant effect, in this case, than the planar resolution effects

(see Figure 3.21(a)). Similarly, the Reynolds stresses, shown in Figure 3.23(a), for all the

cases are also in good agreement with the DNS [69]. Also, the variation in the viscous stress

profile is not significant. Finally, the trends in the energy spectra, shown in Figure 3.22 are

consistent with that observations at Reτ = 100 at similar resolutions.

Next, using the guidance of resolution estimates obtained from the Reτ = 100 resolu-

tion study, we present results at Reτ = 180 obtained with a 16 × 16 × 16 mesh using p = 3

and p = 4 (see Table 3.6). The resolution in the planes using this mesh are ∆x+ ≈ 140

and ∆z+ ≈ 47 in the streamwise and spanwise direction, respectively. Meanwhile, the

wall-normal direction resolution at the wall using p = 3 and p = 4 is ∆y+
w ≈ 1.0 and

∆y+
w ≈ 0.71 (∆y+

m ≈ 6.0), respectively.

The meanflow and rms profiles are shown in Figure 3.24. As expected, they are in excel-

lent agreement with the DNS [69] data, note the near-wall rms profiles at p = 4 are virtually

indistinguishable from the reference DNS [69]. These results are similar to Reτ = 100 case

using a 8×8×8 stretched mesh (D3 and D4). Predictably, the energy spectra (Figure 3.25)

follow the trends seen earlier at Reτ = 100 with commensurate resolutions. The Reynolds

stress profile using ∆y+
w ≈ 0.71, shown in Figure 3.26, for p = 4 is indistinguishable from

the reference DNS [69], while the p = 3 shows reasonable agreement with the reference.

The minimial differences in the stress profiles, shown in Figure 3.26, for p = 3 and p = 4

indicates that the results are adequately converged. Here, we note the particularly good

agreement with DNS [69] obtained using p = 4. Even with p = 3, the difference in total

stress may be attributed to the slight peak in the Reynolds stress at y/δ ≈ 0.1. We note in

passing that since we do not have a reference computation for the viscous stress profile, we
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employ the current p = 4 case as reference for the Reτ = 180 results obtained using the

8 × 8 × 16 mesh.

Finally, we present results at Reτ = 395, the highest Reynolds number considered

in this work. A mesh is chosen (8 × 8 × 18) such that ∆x+ ≈ 310, ∆z+ ≈ 46, and

∆y+
w ≤ 3.0 viscous wall units. We use a higher value of grid stretching cs = 2.0 in

the wall-normal direction that gives us element interface locations for the lower half of

the channel as y+ ≈ {24, 83, 205, 395}. Using p = 4 at the center of the channel gives a

minimum collocation spacing (based on Gauss-Lobatto quadrature) as ∆y+
c ≈ 22 compared

with maximum spacing at centerline (∆y+
c ≈ 6.5) for the reference DNS of Moser, Kim,

Mansour [69]. By any extent, using p = 4 (∆y+
w ≈ 2.8) with this mesh amounts to an

extremely coarse resolution. In fact, this resolution is comparable to the A4 case (see

Table 3.1). Now, exploiting the flexibility of the DG discretization, we increase the local

polynomial order such that we get a wall-normal direction polynomial order distribution as

p = {6, 6, 5, 4, 4, 5, 6, 6}.

Firstly, the meanflow and rms profiles, shown in Figure 3.27, for both cases are in

reasonable agreement with the reference DNS [69]. However, through local p−refinement,

we notice an improvement compared with the p = 4 case in the rms profiles, shown in

Figure 3.27(b) in the region close to the wall. Meanwhile, the Reynolds stress and viscous

stress profiles (Figure 3.29) appear reasonable along with the energy spectra (Figure 3.28)

for the resolutions considered. The improved total stress profile (see Figure 3.29), in the

near-wall region, for the variable polynomial order demonstrates the efficacy of the local

polynomial refinement in improving the accuracy of solution efficiently.

It is interesting to overlay the meanflow and rms profiles for Reτ = 395 and Reτ = 100

along with their corresponding reference solution. A comparison of the low order statistics

obtained at Reτ = 395 using the current mesh with the 4 × 4 × 8 mesh using p = 4 and

p = 6 is shown in Figures 3.30 and 3.31. The striking similarity between the two cases at

both p = 4 and p = 6 (locally) validates the resolution guidelines devised earlier using the

lower Reynolds number(Reτ = 100).
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3.3 Discussion

Before concluding this chapter, we comment on the DG spatial resolution effects by com-

paring and constrasting the effect of polynomial enrichment on the various meshes consid-

ered at Reτ = 100.

We begin with an overlay of the solutions obtained using for C3, C4, and C6 can be

seen in Figures 3.32, 3.33, and 3.34. The solution is strongly influenced by the numerical

dissipation introduced through the Lax-Friederichs (Euler) flux at the lower polynomial

orders (p ≤ 4). In particular, this may be due to the particularly low resolution in the

x−direction. It is well-known that upwind schemes are effective in damping scales at

high wavenumbers. Therefore, using a low resolution may not provide sufficient scale

separation between the energy containing scales (low wavenumbers) and those susceptible

to the upwinding effect. Evidence to support this view may be seen in the overall lower

energy content in the streamwise energy spectra shown in Figure 3.33(a). Also, compare

these results with that obtained using the A mesh where there is a sharp drop-off in the

energy spectra at the highest wavenumbers, clearly seen for A3 (see Figure 3.39). By

contrast, both B and D with p ≥ 3 ensure that the planar resolution is sufficient to ensure

that the effects of upwinding do not affect the dynamically important large scales (See

Figures 3.36 and 3.42).

Recently, Cockburn [19], using a linear hyperbolic system, related the form of the dis-

sipation term to particular choices of numerical fluxes in discontinuous Galerkin meth-

ods. Specifically, for a wave equation, the numerical dissipation introduced by the Lax-

Friederichs flux is related to the speed of propagation and the solution jump. Given this,

we can expect the dissipation in the streamwise direction to be higher for the turbulent

channel flow since that is the principal direction of the meanflow. Further, at the lower

resolutions the jumps are likely to be more significant. Therefore, a combination of in-

sufficient scale separation, larger solution jumps and the direction of the meanflow leads

to the resolution in the streamwise direction determining the dissipation properties of the

simulation. Fortunately, the increase in resolution through polynomial order and/or mesh

refinement dramatically reduces the dissipation introduced through the convective flux.

This leads us to the consistently higher energy levels observed in the spectra for A and

B when compared with C and D, respectively (refer to Figures 3.39, 3.36, 3.33, and 3.42).

This may be explained by the lower y resolution for A and B in the near-wall region com-

pared with C and D. The underesolved viscous wall region results in the energy containing
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eddies that are not sufficiently influenced by the physical damping due to viscous effects.

Thus, the equilibrium that is achieved through an interaction of inertial and viscous ef-

fects close to the rigid walls is not faithfully represented. This leads to an artificially high

energy content in the resolved scales resulting in overprediction in the wall-shear stress.

Furthermore, this imbalance is exacerbated for the B mesh, that by virtue of a higher planar

resolution, contains lower dissipation (see Figure 3.35 and 3.37). By contrast, the A mesh

benefits from a stabilizing influence of the numerical dissipation leading to an overall better

agreement with DNS (see Figure 3.38 and 3.40).

Now, an increase in the resolution in the wall-normal direction from 4 to 8 elements,

that lead to improved prediction of the velocity gradients close to the wall, minimize the

overprediction in the τw. However, the presence of numerical dissipation leads to solutions

that are overdiffuse (see Figures 3.32 and 3.34). The dissipative effect that arises naturally

in the discretization of the convection term is interpreted as an implicit SGS model in

MILES (Monotonically Integrated LES). Thereby, eliminating the need for explicit SGS

modeling [37]. This approach, currently an active area of research, is motivated by the

need to reduce the computational expense associated with an explicit SGS model.

In the current work, our goal is to evaluate the efficacy of a VMS model to reduce the

resolution requirements. Since the effect of an eddy viscosity SGS model is to enhance

dissipation, the resolutions (h and p) chosen, in the context of modeling, should be chosen

such that the influence of numerical dissipation is minimized. Fortunately, the D mesh is

effective in reducing both the adverse effects of low resolutions in the x− and y−direction

allowing a better convergence to the reference solution [14] with polynomial enrichment

(see Figures 3.41 and 3.43). Thus, the current resolution study provides guidelines for

selection of the mesh and polynomial order in the context of multi-scale modeling. In

doing so, we have illustrated the advantages of local hp−refinement that can be exploited

to reduce the required degrees of freedom without sacrificing accuracy.

3.4 Summary

We have highlighted the salient features of the DG spatial discretization and their role in the

context of coarse grid DNS of turbulent channel flows. The effect of varying the resolution

both individually in each coordinate direction, as well as, simultaneously in all the three

coordinate directions are studied.
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The solution jump (slip) at the boundary is related to the local resolution. In particular,

the resolution in the wall-normal direction is found to be crucial in regulating the solution

jumps at the wall. For particularly coarse near-wall resolutions (∆y+
w > 4), leads to large

values of slip at the channel walls. Consequently, the results obtained are found to be

in poor agreement with the reference DNS [14, 69]. Importantly, with reasonable planar

resolution, a modest reduction in ∆y+
w values lead to a reduction in the magnitude of slip

and improved agreement with DNS. In general, allowing the solution to slip at the channel

walls is found to mitigate the near-wall resolution requirements by capturing part of the

boundary layer in the jump (see Figure 3.45).

Next, the non-linear stability of the simulation is determined by the resolution in the

spanwise direction (∆z+ ≤ 50). Meanwhile, the numerical dissipation present in the dis-

retization is found to depend on the resolution in the streamwise direction. In fact, at very

low resolution, similar to traditional upwind finite volume discretizations, the numerical

dissipation dominates the solution by suppressing the turbulent fluctuations. At moderate

resolutions, the numerical dissipation levels are reduced, but, the solutions obtained indi-

cate the presence of aliasing and SGS effects.

Overall, without any explicit modeling, reasonable low-order statistics are obtained

here even with ∆x+ ≤ 150 and ∆z+ ≤ 50, and ∆y+
m ≤ 15 using p ≥ 3. The authors

note that mesh resolution guidelines developed are for the current implementation, other

choices for the numerical fluxes both convective and viscous can alter these estimates. And

therefore, it is a potential course for future research.

Importantly, using the turbulent channel flow, we have demonstrated the potential for

producing both accurate, as well as, efficient turbulence simulations by exploiting the local

hp−refinement capabilities of our DG implementation.
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Case p ∆y+
w Ndof Slip τw uτ

A3 3 4.35 8,192 -0.5442 1.0816 1.0379
A4 4 2.96 16,000 -0.0342 1.0018 0.9988
A5 5 2.14 27,648 0.1842 0.9760 0.9858
A6 6 1.62 43,904 0.0868 0.9818 0.9887
A8 8 1.01 93,312 -0.0055 0.9812 0.9897

Table 3.1: Simulation parameters and results summary using 4×4×8 mesh for a resolution
study at Reτ = 100. The element size in wall units for this mesh topology is ∆x+ ≈ 314
and ∆z+ ≈ 52.3 in the streamwise and spanwise directions, respectively.

Case p ∆y+
w Ndof Slip τw uτ

B3 3 4.35 16,384 -0.7940 1.3014 1.1397
B4 4 2.96 32,000 -0.4528 1.2166 1.1020
B6 6 1.62 87,808 0.1387 1.0553 1.0264

Table 3.2: Simulation parameters and results summary using a 8 × 4 × 8 mesh for a
resolution study at Reτ = 100. The element size in wall units for this mesh topology is
∆x+ ≈ 157 and ∆z+ ≈ 52.3 in the streamwise and spanwise directions, respectively.

Case p ∆y+
w Ndof Slip τw uτ

C2 2 2.25 6,912 -0.0183 0.6828 0.8248
C3 3 1.40 16,384 0.0063 0.7976 0.8913
C4 4 0.95 32,000 0.0023 0.8614 0.9262
C6 6 0.52 87,808 -0.0002 0.9532 0.9751

Table 3.3: Simulation parameters and results summary using a 4 × 8 × 8 mesh for a
resolution study at Reτ = 100. The element size in wall units for this mesh topology is
∆x+ ≈ 314 and ∆z+ ≈ 52.3 in the streamwise and spanwise directions, respectively.

Case p ∆y+
w Ndof Slip τw uτ

D2 2 2.25 13,824 -0.0425 0.7984 0.8912
D3 3 2.33 32,768 -0.0350 0.9553 0.9766
D4 4 0.95 64,000 0.0060 0.9806 0.9875
D6 6 0.52 175,616 -0.0002 0.9693 0.9818
E3 3 4.32 32,768 -0.6934 1.2576 1.1204

Table 3.4: Simulation parameters and results summary using a 8 × 8 × 8 mesh for a
resolution study at Reτ = 100. The element size in wall units for this mesh topology is
∆x+ ≈ 157 and ∆z+ ≈ 52.3 in the streamwise and spanwise directions, respectively.
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p ∆y+
w Ndof Slip τw uτ

3 2.52 65,536 -0.0607 0.9009 0.9482
4 1.71 128,000 0.0567 0.9403 0.9687

{5, 5, 4, 3} 1.24 158,976 0.0229 0.9555 0.9765

Table 3.5: Simulation parameters and results summary using a 8 × 8 × 16 mesh for a
resolution study at Reτ = 180. The element size in wall units for this mesh topology is
∆x+ ≈ 283 and ∆z+ ≈ 47.1 in the streamwise and spanwise directions, respectively.

p ∆y+
w Ndof Slip τw uτ

3 1.01 262,144 0.0077 0.9944 0.9962
4 0.69 512,000 0.0021 1.0025 1.0003

Table 3.6: Simulation parameters and results summary using a 16 × 16 × 16 mesh for a
resolution study at Reτ = 180. The element size in wall units for this mesh topology is
∆x+ ≈ 141 and ∆z+ ≈ 47.1 in the streamwise and spanwise directions, respectively.

p ∆y+
w Ndof Slip τw uτ

4 2.82 144,000 -0.1501 1.01 1.00
{6, 6, 5, 4} 1.46 295,776 0.1190 1.03 1.01

Table 3.7: Simulation parameters and results summary using a 8 × 8 × 18 mesh for a
resolution study at Reτ = 395. The element size in wall units for this mesh topology is
∆x+ ≈ 310 and ∆z+ ≈ 46 in the streamwise and spanwise directions, respectively.
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Figure 3.3: Meanflow and rms profiles for Reτ = 100 computed with different mesh
topologies using p = 3: DNS; 4 × 4 × 8; 8 × 4 × 8; 4 × 8 × 8;
8 × 8 × 8 .
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(b)

Figure 3.4: One-dimensional energy spectra in x− and z− directions for Reτ = 100
computed at y+ ≈ 12 with different mesh topologies using p = 3: DNS;
4 × 4 × 8; 8 × 4 × 8; 4 × 8 × 8; 8 × 8 × 8 .
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Figure 3.5: One-dimensional energy spectra in x− and z− directions (u and v components
only) for Reτ = 100 computed at y+ ≈ 12 with different mesh topologies using p = 3:

DNS; 4 × 4 × 8; 8 × 4 × 8; 4 × 8 × 8; 8 × 8 × 8 .
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Figure 3.6: Reynolds, viscous and total stress profiles for Reτ = 100 computed with
different mesh topologies using p = 3: DNS; 4 × 4 × 8; 8 × 4 × 8;
4 × 8 × 8; 8 × 8 × 8 .
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Figure 3.7: Meanflow and rms profiles for Reτ = 100 computed with different mesh
topologies using p = 4: DNS; 4 × 4 × 8; 8 × 4 × 8; 4 × 8 × 8;
8 × 8 × 8.
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Figure 3.8: One-dimensional energy spectra in x− and z− directions for Reτ = 100
computed at y+ ≈ 12 with different mesh topologies using p = 4: DNS;
4 × 4 × 8; 8 × 4 × 8; 4 × 8 × 8; 8 × 8 × 8.
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Figure 3.9: One-dimensional energy spectra in x− and z− directions (u component only)
for Reτ = 100 computed at y+ ≈ 12 with different mesh topologies using p = 4:
DNS; 4 × 4 × 8; 8 × 4 × 8; 4 × 8 × 8; 8 × 8 × 8.
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Figure 3.10: Reynolds, viscous and total stress profiles for Reτ = 100 computed with
different mesh topologies using p = 4: DNS; 4 × 4 × 8; 8 × 4 × 8;
4 × 8 × 8; 8 × 8 × 8.
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Figure 3.11: Meanflow and rms profiles for Reτ = 100 computed with different mesh
topologies using p = 6: DNS; 4 × 4 × 8; 8 × 4 × 8; 4 × 8 × 8;

8 × 8 × 8.
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Figure 3.12: One-dimensional energy spectra in x− and z− directions for Reτ = 100
computed at y+ ≈ 12 with different mesh topologies using p = 6: DNS;
4 × 4 × 8; 8 × 4 × 8; 4 × 8 × 8; 8 × 8 × 8.
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Figure 3.13: One-dimensional energy spectra in x− and z− directions (u and v compo-
nents only) for Reτ = 100 computed at y+ ≈ 12 with different mesh topologies using
p = 6: DNS; 4 × 4 × 8; 8 × 4 × 8; 4 × 8 × 8; 8 × 8 × 8.
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Figure 3.14: Reynolds, viscous and total stress profiles for Reτ = 100 computed with
different mesh topologies using p = 6: DNS; 4 × 4 × 8; 8 × 4 × 8;
4 × 8 × 8; 8 × 8 × 8.
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Figure 3.15: Meanflow and rms profiles for Reτ = 100 computed with a 4 × 4 × 8 mesh
using two different polynomial orders: DNS; p = 4; p = 8.
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Figure 3.16: Reynolds, viscous and total stress profiles for Reτ = 100 computed with a
4 × 4 × 8 mesh using two different polynomial orders: DNS; p = 4;
p = 8.
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Figure 3.17: One-dimensional energy spectra in x− and z− directions for Reτ = 100
computed at y+ ≈ 12 for Reτ = 100 with a 4 × 4 × 8 mesh using two different polynomial
orders: DNS; p = 4; p = 8.
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Figure 3.18: Comparison of meanflow and rms profiles for Reτ = 100 computed to il-
lustrate the effects of numerical dissipation using different polynomial orders and mesh
topologies: DNS; 4 × 8 × 8, p = 2; 4 × 8 × 8, p = 4; 8 × 8 × 8,
p = 2; 8 × 8 × 8, p = 4.
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Figure 3.19: Comparison of Reynolds, viscous, and total stress profiles for Reτ = 100
computed to illustrate the effects of numerical dissipation using different polynomial orders
and mesh topologies: DNS; 4×8×8, p = 2; 4×8×8, p = 4; 8×8×8,
p = 2; 8 × 8 × 8, p = 4.
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Figure 3.20: Comparison of one-dimensional energy spectra in x− and z− directions for
Reτ = 100 computed at y+ ≈ 8 to illustrate the effects of numerical dissipation using
different polynomial orders and mesh topologies: DNS; 4× 8× 8, p = 2;
4 × 8 × 8, p = 4; 8 × 8 × 8, p = 2; 8 × 8 × 8, p = 4.
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Figure 3.21: Meanflow and turbulence intensity profiles for Reτ = 180 computed with a
8 × 8 × 16 mesh using different polynomial orders: DNS; p = 3; p = 4;

p = {5, 5, 4, 3, 3, 4, 5, 5}.
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Figure 3.22: One-dimensional energy spectra in x− and z− directions for Reτ = 180
computed at y+ ≈ 20 with a 8 × 8 × 16 mesh using different polynomial orders:
DNS; p = 3; p = 4; p = {5, 5, 4, 3, 3, 4, 5, 5}.
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Figure 3.23: Reynolds, viscous, and total stress profiles for Reτ = 180 computed with
a 8 × 8 × 16 mesh using different polynomial orders: DNS; p = 3;
p = 4; p = {5, 5, 4, 3, 3, 4, 5, 5}.
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Figure 3.24: Meanflow and turbulence intensity profiles for Reτ = 180 computed with a
16×16×16 mesh using different polynomial orders: DNS; p = 3; p = 4.
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Figure 3.25: One-dimensional energy spectra in x− and z− directions for Reτ = 180
computed at y+ ≈ 20 with a 16 × 16 × 16 mesh with different polynomial orders:
DNS; p = 3; p = 4.
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Figure 3.26: Reynolds, viscous, and total stress profiles for Reτ = 180 computed with a
16×16×16 mesh using different polynomial orders: DNS; p = 3; p = 4.
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Figure 3.27: Meanflow and turbulence intensity profiles for Reτ = 395 computed with
a 8 × 8 × 18 mesh using different polynomial orders: DNS; p = 4;
p = {6, 6, 5, 4, 4, 5, 6, 6}.
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Figure 3.28: One-dimensional energy spectra in x− and z− directions for Reτ = 395
computed at y+ ≈ 12 with a 8×8×18 mesh with different polynomial orders: DNS;

p = 4; p = {6, 6, 5, 4, 4, 5, 6, 6}.
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Figure 3.29: Reynolds, viscous, and total stress profiles for Reτ = 395 computed with
a 8 × 8 × 18 mesh using different polynomial orders: DNS; p = 4;
p = {6, 6, 5, 4, 4, 5, 6, 6}.
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Figure 3.30: Meanflow and turbulence intensity profiles for Reτ = 395 and Reτ = 100
computed using a similar relative resolution: DNS; p = 4 at Reτ = 395;
p = 4 at Reτ = 100.
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Figure 3.31: Meanflow and turbulence intensity profiles for Reτ = 395 and Reτ = 100
computed using a similar relative resolution: DNS; p = {6, 6, 5, 4, 4, 5, 6, 6} at
Reτ = 395; p = 6 at Reτ = 100.
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Figure 3.32: Meanflow and rms profiles for Reτ = 100 computed with a 4 × 8 × 8 mesh
using different polynomial orders: DNS; p = 3; p = 4; p = 6.
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Figure 3.33: One-dimensional energy spectra in x− and z− directions for Reτ = 100
computed at y+ ≈ 8 with a 4 × 8 × 8 mesh using different polynomial orders: DNS;

p = 3; p = 4; p = 6.
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Figure 3.34: Reynolds, viscous and total stress profiles for Reτ = 100 computed with a
4 × 8 × 8 mesh using different polynomial orders: DNS; p = 3; p = 4;

p = 6.
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Figure 3.35: Meanflow and rms profiles for Reτ = 100 computed with a 8 × 4 × 8 mesh
using different polynomial orders: DNS; p = 3; p = 4; p = 6.
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Figure 3.36: One-dimensional energy spectra in x− and z− directions for Reτ = 100
computed at y+ ≈ 12 with a 8× 4× 8 mesh using different polynomial orders: DNS;

p = 3; p = 4; p = 6.
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Figure 3.37: Reynolds, viscous and total stress profiles for Reτ = 100 computed with a
8 × 4 × 8 mesh using different polynomial orders: DNS; p = 3; p = 4;

p = 6.
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Figure 3.38: Meanflow and rms profiles for Reτ = 100 computed with a 4 × 4 × 8 mesh
using different polynomial orders: DNS; p = 3; p = 4; p = 5;

p = 6.
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Figure 3.39: One-dimensional energy spectra in x− and z− directions for Reτ = 100
computed at y+ ≈ 12 for Reτ = 100 with a 4 × 4 × 8 mesh using different polynomial
orders: DNS; p = 3; p = 4; p = 5; p = 6.
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Figure 3.40: Reynolds, viscous and total stress profiles for Reτ = 100 computed with a
4 × 4 × 8 mesh using different polynomial orders: DNS; p = 3; p = 4;

p = 5; p = 6.
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Figure 3.41: Meanflow and rms profiles for Reτ = 100 computed with a 8 × 8 × 8 mesh
using different polynomial orders: DNS; p = 3; p = 4; p = 6.
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Figure 3.42: One-dimensional energy spectra in x− and z− directions for Reτ = 100
computed at y+ ≈ 12 with a 8× 8× 8 mesh using different polynomial orders: DNS;

p = 3; p = 4; p = 6.
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Figure 3.43: Reynolds, viscous and total stress profiles for Reτ = 100 computed with a
8 × 8 × 8 mesh using different polynomial orders: DNS; p = 3; p = 4;

p = 6.
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Figure 3.44: Wall shear stress and average streamwise velocity slip (at the wall) variation
with polynomial orders for different meshes at Reτ = 100. The filled symbols (• , ) are
planar averaged streamwise velocity slip at the channel walls (Uw, slip) while the open
symbols (◦ , ) are the time-averaged wall shear stress (τw).
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Figure 3.45: Meanflow and turbulence intensities profiles for Reτ = 100 computed using a
8 × 8 × 8 mesh at p = 3 with local h−refinement in the wall-normal direction: DNS;

Uniform; Stretched with cs = 1.25.



Chapter 4

Boundary Conditions Enforcement

The enforcement of wall boundary conditions weakly through numerical viscous fluxes is

observed to allow the solution to jump at the channel walls (physical boundary interface).

Also, we have noticed that the jumps in the solution at the element interfaces (the physical

boundary included) are closely related to the local resolution. Specifically, as wall-normal

direction resolution increases, the magnitude of these jumps is observed to decrease. Here,

we pursue a computationally efficient means for regulating slip in lieu of resolution in-

crease. In this chapter, we explore the use of a penalty that acts directly on these jumps

through the numerical viscous flux.

First, we begin with the definitions of the the numerical viscous flux for this purpose.

Later, we present numerical results to illustrate the effects of introducing penalties on the

jumps at both the physical boundaries as well as interelement boundaries. As usual, we

place particular emphasis on the jumps at the physical boundaries where the jumps are

generally more prominent.

4.1 Numerical Viscous Fluxes Definitions

The Bassi–Rebay viscous flux allows the interface conditions to be imposed weakly i.e.

allowing the jumps in the solution at interelement boundaries. Since all the interface con-

ditions are enforced in this way, the Dirichlet conditions at the channel walls i.e. the no-slip

condition is only satisfied in a weak sense. In Chapter 3, we have seen that using extremely

coarse near-wall resolutions in the y−direction, with the current approach, can lead to a

relatively large negative slip in the streamwise velocity at the wall. Recall that the direction

of the flow in the channel is in the streamwise direction (in the positive direction). There-

fore, a large negative value of the streamwise velocity (planar averaged) at the wall is an

indication of a local reversal in the meanflow at the wall. This has the potential at even

coarser resolutions (LES setting) to alter the near-wall dynamics that can adversely affect

reliable prediction of turbulence statistics.

Therefore, we propose to modify the Bassi–Rebay numerical viscous flux (refer to

87
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Eq. 2.9), to a form similar to the Local Discontinuous Galerkin [3, 20], that provides a

means to control the magnitude of jumps at the interelement boundaries.

̂Fv
n(U−, σ−

j ,U+, σ+
j ) =

1
2

(

Fv
n(U−, σ−

j ) + Fv
n(U+, σ+

j )
)

+ ε
(

U+ − U−) (4.1)

where ε > 0 is a penalty factor. When the penalty factor is set to zero the Bassi-Rebay

numerical viscous flux introduced earlier (see Eq. 2.9) is recovered. With the penalty pa-

rameter set to a large value, the solution is forced to satisfy the imposed wall-boundary

conditions. In practice, while evaluating the numerical flux at the wall (refer Eq. 2.11) U+

corresponds to Ubc. Thus, any deviation from the Dirichlet conditions is penalized using

the above flux definition and the degree depends on the magnitude of the penalty. Further,

we can use this flux to reduce the solution jumps at the interior interelement interfaces.

Now, the authors emphasize that even with slip at the channel walls, reasonable tur-

bulence statistics can be obtained using DG (see Figure 3.44). Also, the weak enforce-

ment of Dirichlet conditions mitigates the high resolution requirements in the wall-normal

direction, permitting the use of rather large ∆y+
w compared with traditional discretiza-

tions [14, 15]. Now, in general, a large negative slip in the streamwise velocity at the wall

coincides with overprediction of the wall shear stress. In fact, we notice a trend towards a

positive streamwise slip with an increase in resolution (this is also indicative of reasonable

slip in the other velocity components at the wall). In order to counter the effects of negative

slip, we modify the penalized Bassi-Rebay flux introduced above (refer to Eq. 4.1) for the

streamwise momentum equation such that the u slip is constrained to be positive as

̂Fv
n(U−, σ−

j ,U+, σ+
j ) =

1
2

(

Fv
n(U−, σ−

j ) + Fv
n(U+, σ+

j )
)

+ Υ(U+,U−, ε) (4.2)

where

Υ(U+,U−, ε) =

⎧

⎨

⎩

0, if U− ≥ 0

ε (U+ − U−) , otherwise
(4.3)

and ε > 0 is a penalty factor as before. The above numerical viscous flux, devised to allow

only positive jumps in the streamwise velocity at the wall, serves to illustrate the potential

of the numerical viscous fluxes to act as a wall-model [73]. In fact, since part of the viscous

sublayer is captured by the jump in the solution, we believe that the standard Bassi-Rebay

flux (refer to Eq. 2.9) indeed is a wall-model, albeit a less effective one at ∆y+
w ≥ 3 viscous

wall units. We hope to improve the capabilities, in this capacity, using the modifications
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proposed above.

Currently, we introduce four major scenarios using the above definitions that we employ

in our study.

1. Default to standard Bassi-Rebay (BR) that uses no penalty (ε = 0)

2. Introduce a penalty in all the solution components at the wall boundaries that we

term Boundary Local Discontinuous Galerkin (BLDG) method.

3. Introduce a penalty in all the solution components at the wall boundaries, except the

streamwise momentum equation where we constrain the streamwise velocity to be

positive that we term Streamwise-positive BLDG (SBLDG) method.

4. Introduce a penalty in all the solution components at all the interelement interfaces

and physical boundaries that we term simply as LDG method.

Therefore, in terms of degree of penalization, the fluxes may be ranked in ascending order

as BR, SBLDG, BLDG, and LDG, respectively. Also, for convenience, hereafter we drop

the reference to flux, for example, BR should be interpreted/read as BR flux.

4.2 Numerical Results

Similar to the validation study (Chapter 3), for reasons of limited computational resources,

we focus primarily on the results at Reτ = 100. However, we present some results at

Reτ = 180 and Reτ = 395 to corroborate the observations at Reτ = 100. Note that in

order to completely define the penalty based numerical viscous fluxes, we need to specify

a value for the penalty factor ε. It is required that ε > 0, we usually pick the value of

ε ≥ 1/hw, where hw is the extent i.e. height of the element at the boundary in the wall-

normal direction (y−direction).

4.2.1 Low Reynolds Number

We begin our study by revisiting the case with a 8 × 4 × 8 mesh using p = 3 and introduc-

ing the modifications to the numerical viscous flux outlined above (refer to Equations 4.1

and 4.2). The simulation parameters along with resulting τw predictions can be seen in

Table 4.1. Recall that while the planar resolution is sufficient to get reasonable low-order
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statistics, as seen in the 8 × 8 × 8 mesh using p = 3 in Figure 3.41, the particularly coarse

wall-normal direction (∆y+
w ≈ 4.3 ) resolution leads to poor τw predictions (refer to Ta-

ble 3.2).

Similar to the resolution study in the previous chapter, we present the profiles of mean-

flow, viscous stress , Reynolds stress, total stress, rms, and energy spectra. For the case

under consideration, plots of these statistics can be seen in Figure 4.1, 4.2, and 4.3.

A comparison of the meanflow profiles obtained using BR, SBLDG-BR, SBLDG, and

LDG, using ε = 100.0 > 1/hw, is shown in Figure 4.1(a). The value of the penalty factor

is chosen to better illustrate the effects of introducing a penalty. Just to clarify, SBLDG-

BR and SBLDG refer to cases where the components (at the channel walls) except the

streamwise momentum employ BR and BLDG, respectively. Note the improvement in the

meanflow profile compared with BR for all the penalty fluxes considered here. As we shall

see later, BLDG produces results that are very similar to the LDG case.

In Table 4.1, note the large difference in the magnitude of the streamwise velocity

slip between the SBLDG and LDG cases. By contrast, the meanflow profiles (see Fig-

ure 4.1(a)) for both the cases are remarkably similar and are in better agreement with the

reference compared to the BR case. Now, the noticeable difference between SBLDG-BR

and SBLDG indicates that slip in the other components at the wall (v and w) also play a

major role in affecting drag predictions. Now, the similar results obtained with SBLDG

and LDG (BLDG) further reinforces the importance of regulating slip in the other mo-

mentum components (v and w) for reasonable τw predictions. Additionally, it suggests that

penalizing just the negative component of the streamwise slip at the solid walls is sufficient.

Moreover, we also note that the wall shear stress predictions for BLDG and LDG are

slightly higher than the SBLDG case (refer to Table 4.1). Importantly, using penalty fluxes

represents a computationally efficent manner, as opposed to increasing the local resolution,

to obtain reasonable low-order statistics at coarse resolutions that can be exploited in the

context of LES. Furthermore, this provides a consistent approach through the use of a

numerical viscous flux to better represent the dynamics of the near-wall region using coarse

resolutions in the wall-normal direction. Essentially, this is the function of a wall-model

[73], thus revealing the potential of the numerical viscous flux to serve in this capacity.

An examination of the viscous stress profile, shown in Figure 4.1(b), reveals a notice-

able trend. For this plot, we use the 8 × 8 × 8 stretched mesh using p = 6 with BR as
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reference that better resolves the viscous wall region. Firstly, the introduction of penaliza-

tion has an overall desirable effect on the viscous stress profiles, seen in Figure 4.1(b), and

the extent is related to the degree of the penalization. This is seen in the significant differ-

ence between the SBLDG-BR and SBLDG case. Further, the similarity of the LDG case

and SBLDG highlights the importance of the regulating solution jump at the solid walls

for more reasonable turbulence statistics. To be more explicit, at this resolution, the jumps

at the channel walls appear to more significant than the jumps in the interior region of the

channel. At this point, we again note that the shear stress prediction for the LDG case is

slightly higher than that obtained using SBLDG (We comment on these differences towards

the end of this chapter). Also, we note an improved total stress profile for the SBLDG and

LDG compared with SBLDG-BR and BR cases (see Figure 4.1). As we shall see, this is

due in large part to a betterment in the Reynolds stress profile.

There is also a noticeable improvement in the rms and Reynolds stress profiles, shown

in Figure 4.2, with the introduction of the penalty fluxes. Note the efficacy of the penalty

fluxes in reducing the slip at the wall (seen clearly for the streamwise component of the

LDG case in Figure 4.2(b)). However, away from the wall all the penalty fluxes produce

turbulence intensities that are very similar. And while both SBLDG and SBLDG-BR show

a closer correspondence with the reference [14] than BR, the agreement of SBLDG is par-

ticularly good. This suggests that the correlation between the streamwise velocity and

wall-normal velocity benefits from the penalization of the jump in the wall-normal compo-

nent of velocity at the wall. This further supports the view that slip in all the components

of momentum at the wall play an active role in affecting the solution. In fact, it is the com-

bination of allowing the slip to be postive in the streamwise direction and penalizing any

slip in the other components that may allow for the most accurate shear stress prediction.

And, the slight increase in the shear stress predictions for BLDG and LDG may be a direct

result of penalizing the positive slip in the streamwise direction. BLDG and LDG likely

constrain the solution at the wall more than the SBLDG approach.

Now, the improvement seen with SBLDG, BLDG, and LDG are not surprising since

slip at the wall have particular interpretations. Slip in the wall-normal component is akin to

introducing suction and blowing at the wall. Turbulence control studies in the channel that

introduce suction and blowing at the wall have been known to significantly affect the drag

at the wall [15,17,40,75]. Likewise, slip in the spanwise direction can be interpreted as an

imposed wall motion that is also known to affect the drag predictions in the channel [52]. It
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is likely that the introduction of a penalty on the solution jump at the wall minimizes these

effects and thereby leads to improved drag predictions. Moreover, since an increase in

resolution leads to smaller jumps in the solution, the adverse effects associated with large

magnitudes of solution jumps are minimized with reasonable ∆y+
w . Therefore, at these

resolutions, wall boundary conditions enforcement through BR likely suffice for reliable

τw predictions (see Chapter 3).

Next, the energy spectra in the streamwise and spanwise directions can be seen in Fig-

ure 4.3. Notice a clear trend towards a decreasing energy content in the medium to high

resolved wavenumbers as the degree of penalization is increased from BR to LDG in the

streamwise component of the streamwise energy spectra. The near-wall dynamics are likely

improved through the corrective mechanism introduced to suitably regulate the slip at the

channel walls based on the physics in the flow. Further, the large scale coherent structures

i.e. low wavenumber scales are known to be affected by the geometry (see Figure 1.1).

Since the information regarding the geometry is communicated through the boundary con-

ditions, a better enforcement of the wall boundary conditions using large ∆y+
w has a de-

sirable effect on the dynamically important scales [5, 43, 55, 85]. It is also possible that

penalization may introduce some dissipation in the scheme [19]. In any event, this poten-

tially leads to a more reasonable cascade [36, 43, 74, 87] of energy from the large to small

scales. Evidence to support this view is found in the improvement seen for the streamwise

component of the streamwise energy spectra shown in Figure 4.3(a).

Overall, the introduction of the penalty fluxes partially accounts for the low resolution

in the wall-normal direction. However, the spectra, though improved, still exhibit signs

of low planar resolution, namely, the combined effects of SGS and aliasing errors (see

Figure 4.3). As a result, the wall shear stress is still overpredicted, however to a lesser

degree compared with the BR case. Here, a SGS scale model that enhances dissipation in

the resolved scales and/or a mechanism (such as filtering or dealiasing) for removing the

excess energy from these scales is likely needed to further improve the solution.

In order to reinforce the influence of the jumps at the wall in determining the quality

of the solution, we directly compare the LDG results shown above with a BLDG using

the same parameters (see Table 4.1). The similarity of the results, seen in Figures 4.4,

4.5, and 4.6 serves to justify our focus on the wall-boundary conditions enforcement in

improving wall shear stress predictions and thereby leading to better overall solution quality

using the current planar resolution.
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As a continuation of the discussion in the previous chapter on the role of the discretiza-

tion on turbulence statistics, we repeat the study presented above, but now using the 4×4×8

mesh with p = 3 (refer to Table 4.2). Recall that we argued that a mixture of low planar

resolution and low resolution in the wall-normal direction using BR leads to remarkably

“accurate” predictions using this mesh (at p ≥ 4) through comparison with results obtained

other mesh topologies (4 × 8 × 8, 8 × 4 × 8, and 8 × 8 × 8).

The meanflow and viscous stress profiles using BR, SBLDG, BLDG, and LDG for

this mesh is shown in Figure 4.7. Note the similarity of the meanflow predictions with

the penalty fluxes, seen in Figure 4.7(a) with that obtained for the 4 × 8 × 8 mesh using

p = 3 (see Figure 3.3). As a result of minimizing the impact of excessive slip on the

wall shear stress prediction, the dissipative influence of low planar (streamwise) resolution,

on the solution is revealed. These observations lend further credence to the validation

study conducted earlier (see Chapter 3) while simultaneously suggesting the effectiveness

of the penalty approach in minimizing overprediction in τw arising from the use of coarse

resolutions (∆y+
w ) in the wall-normal direction.

As observed earlier with the 8 × 4 × 8 mesh using p = 3, the Reynolds stress and rms

profiles, seen in Figure 4.7(b), are conspicously in better agreement with DNS [14] than the

BR. Similar to the meanflow, the urms profile obtained resembles the profile obained using

the 4 × 8 × 8 mesh with p = 3 (see Figure 3.3(b)). Meanwhile, the spanwise component is

similar to the 8×4×8 results obtained earlier (see Figure 4.2(b)). The peak in the spanwise

turbulence intensity in the near-wall region common to both the 4×4×8 and 8×4×8 may

be attributed to low resolution in the wall-normal direction. And finally, the energy spectra

show trends that are consistent with those observed for the 8×4×8 mesh using p = 3 with

the introduction of jump penalty. These results indicate that while the penalty provides a

means to compensate for low resolution in the wall-normal direction, appropriate selection

of planar resolution is required to obtain good low-order statistics.

Again, we draw attention to the similarity of the results using the penalty approach

(SBLDG, BLDG, and LDG) that reveal the importance of managing solution jump at the

solid walls in improving turbulence statistics for the resolutions considered thus far. Also,

we make a note of the increase in the wall shear stress predictions for the BLDG and LDG

compared with SBLDG (refer to Table 4.2). This trend suggests that penalizing all slip

in the streamwise direction tends to increase wall shear stress predictions. This trend is

consistent with those observed in other discretizations that strictly enforce wall boundary
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conditions while using low wall-normal resolution [15]. These results suggest a potential

advantage of SBLDG over BLDG and LDG.

We intend to provide a detailed discussion of this issue immediately following the

numerical results at higher Reynolds numbers. There, we relate the observations of this

study with results obtained using a model advection diffusion problem where the effects of

penalty have a more direction interpretation. Now, Figures 4.10, 4.11, and 4.12 serve to

further illustrate the role of slip in v and w, respectively, in increasing τw predictions for the

4×4×8 mesh consistent with prior observations using the 8×4×8 mesh. Simultaneously,

the results demonstrate the efficacy of the penalty fluxes to counter this effect.

Let us now study the effects of introducing the penalty approach at a relatively higher

resolution. For this purpose, we use the same 4 × 4 × 8 mesh but with a higher polynomial

order,p = 6, where the obvious effects of low resolution are minimized. The results ob-

tained using BR, SBLDG-BR, BLDG, and LDG are shown in Figures 4.13, 4.14, and 4.15.

The results are also summarized in Table 4.3. Note that we use a smaller value (jumps in

the solution are smaller) for the penalty factor, ε = 10.0 > 1/hw in this study.

Plots of the meanflow and rms profiles in Figure 4.13 are all in good agreement both

with each other and the reference DNS [14]. The energy spectra, shown in Figure 4.14, for

each individual case is virtually indistinguishable and in much better agreement with the

reference [14], compared with the p = 3 case using the same mesh (see Figure 4.9). This

is especially true for the spanwise direction energy spectra where we use 8 elements (see

Figure 4.14(b)).

The Reynolds stress profiles, shown in Figure 4.15(a), similar to the energy spectra are

again virtually indistinguishable except for the SBLDG-BR case that has a slightly higher

peak value in the correlation compared with the reference DNS [14]. This suggests that

the effect of the jump in the unpenalized wall-normal velocity at the wall still exerts a

significant influence on the Reynolds stress estimates. Although, this is a higher resolution

compared to the p = 3 case with the same mesh, the resulting ∆y+
w ≈ 1.6 is still fairly

large. It is likely that BR permits a natural interaction between the fluctuating streamwise

and wall-normal components of slip that is effective in simulating the influence of the wall

for obtaining a reasonable Reynolds stress profile. Meanwhile, by introducing a penalty

through SBLDG-BR, we introduce a bias that may not be appropriate at this resolution.

Meanwhile, the remaining two cases show better profiles since all the components are

penalized equally at the solid walls.
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Finally, the viscous stress profiles, shown in Figure 4.15(b), for all the cases are in

reasonable agreement with the reference DG solution at a higher resolution. Thus, the

total stress profiles, also shown in the same plot, for all the cases are in good agreement

with the reference except SBLDG-BR. This difference may be attributed to the difference

in the Reynolds stress profiles compared to the remaining cases. Overall, the negligible

differences in the solution with the introduction of penalty suggests that the utility of jump

regulation at higher resolutions may be limited.

4.2.2 Moderate Reynolds Number

Before we provide a detailed discussion of the significance of the results obtained using

the penalty fluxes, we present results at Reτ = 180 and 395 using the SBLDG flux that

illustrates the effectiveness of this approach at higher Reynolds numbers.

First, let us consider the case at Reτ = 180 case with a 16 × 4 × 16 mesh using a poly-

nomial distribution in the wall-normal direction as p = {6, 5, 5, 6} (refer to Table 4.4). The

resulting resolution is ∆x+ ≈ 141 and ∆z+ ≈ 47 in the streamwise and spanwise direc-

tions, respectively. Meanwhile, the minimum resolution in the wall-normal direction based

on the collocation grid ∆y+
w ≈ 2.9 (∆y+

m ≈ 45). Thus, the first interelement interface in the

wall-normal direction is at a y+ ≈ 45 implying the next element spanning the remainder of

the channel half height is approximately 145 viscous wall units high. However, the planar

resolution in both the streamwise and spanwise directions are chosen to be sufficiently high

to minimize the effects of aliasing.

We include the 16 × 16 × 16 mesh using p = 4 (refer to Table 3.6) from the validation

study in Chapter 3 for comparison. Again, we use a penalty factor, ε = 100.0 > 1/hw

that is shown to be effective for Reτ = 100 at similar ∆y+
w values. Unfortunately, we do

not have a BR case for direct comparison, however, the relative resolution in the planes

of the current mesh is similar to the 8 × 4 × 8 using p = 6 at Reτ = 100 (see Table 3.2

and Figures 3.35, 3.36, and 3.37). Importantly, recall that the Reτ = 100 case leads

to significant overprediction in τw in spite of using a higher resolution in the wall-normal

direction compared to the current Reτ = 180 case.

A plot of the meanflow profile using SBLDG, seen in Figure 4.16(a), is in excellent

agreement with both the reference DNS [69] and the DG reference solution. And, while

the near-wall turbulence intensities are poorly predicted due to an extremely coarse wall-

normal resolution, as seen before at Reτ = 100, the agreement in the core of the channel is
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good. Although, we are using a lower polynomial order in the outer layer, namely p = 5,

the relative resolution for this particular region of the flow is likely better than the near-wall

region that results in a more reasonable agreement of the rms profiles (y+ > 50) with the

DNS [69]. This hints at the potential of local hp−refinement for suitable distribution of the

required degrees of freedom to ensure efficiency.

Meanwhile, the streamwise direction energy spectra compared with the DG solution

using p = 4 are generally in good agreement, at least in the lower wavenumbers. As before,

the high resolution in the spanwise direction ensures good agreement between the spanwise

energy spectra for both DG solutions. The Reynolds stress profile for the SBLDG case is

reasonable compared with the DG reference that uses a higher resolution in the wall-normal

direction and is indistinguishable from the reference [69]. The viscous stress profile, seen in

Figure 4.18(b), is in good correspondence overall with the reference DG solution. The total

stress, on the same plot, produces a profile that reflects the overprediction in the Reynolds

stress (see Figures 4.18(a) and 4.18(b)).

Let us now consider a case at Reτ = 395 with a 8 × 8 × 12 mesh using p = 4. The

current domain size, smaller than the reference DNS [69], is (π, 2.0, π/2) in the usual

notation. This gives a resolution similar to the resolution for 8 × 4 × 8 using p = 4 at

Reτ = 100 (∆x+ ≈ 155, ∆z+ ≈ 51 and ∆y+
w ≈ 2.8(∆y+

m ≈ 25)). Here, we present a

comparison of the results obtained with SBLDG and LDG using a ε = 1.0 ≤ 1/hw (this

is a departure from the earlier cases that have always used ε ≥ 1/hw). Notice the similar

value of the planar averaged slip at the wall (refer to Table 4.5). First, the absolute values

are modest, but negative in this planar averaged sense since the penalty factor was chosen

to be small. Remarkably, both fluxes share the same nature of slip – negative. The value

of slip for SBLDG is less than LDG since it is biased towards reducing negative slip in the

streamwise direction.

Given this information, we expect the results for these two cases to be similar. Com-

parison plots of the profiles of meanflow and rms are compared with reference DNS [69]

are shown in Figure 4.19. First, the overall agreement with the reference is good for both

cases and importantly with each other. This is reasonable in light of the similar values of

slip at the channel walls. Still, the value of τw is greater for the LDG, consistent with prior

observations. Next, the rms profiles are both in reasonable agreement with the reference.

Note, the difference in the wall value of the streamwise turbulence intensity. This is again

a reflection of the bias towards penalizing negative slip for SBLDG.
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Meanwhile, the energy spectra, seen in Figure 4.20, are virtually indistinguishable from

one another with expected effects of due to the absence of the viscous dissipation scales.

Now, unlike the previous statistics, the Reynolds stress profiles for the LDG are clearly

in better agreement with the reference DNS [69] than the SBLDG case. Meanwhile, the

viscous stress profiles, for both cases, are in reasonable agreement with the higher res-

olution DG solution (note the jump in the viscous stress profile at the first interelement

interface even at this high resolution (see Table 3.7)). However, the jump at the element

interface is less for the LDG compared with the SBLDG. We expect a difference here since

the LDG has an active penalty influence here. Now, let us consider this in the context of

the total stress profile that is plotted in Figure 4.22. Immediately, we clearly see that total

stress for LDG is in much better agreement with the higher resolution DG solution than

SBLDG. In fact, further away from the wall it is indistinguishable from the reference us-

ing p = {6, 6, 5, 4, 4, 5, 6, 6} where it shares the same local resolution. By contrast, the

SBLDG underpredicts the total stress throughout the channel half height. A major portion

of this difference can be clearly attributed to the Reynolds stress (see Figure 4.21(a)). This

result indicates the potential advantage in including a modest penalty even on the interior

element interfaces at extremely coarse resolutions that we are likely to encounter in LES.

Now, in the section to follow, we discuss the results presented here with the aid of simple

advection-diffusion problem where the effects of penalty fluxes are transparent.

4.3 Discussion

Recently, Collis [29], using the current DG implementation to solve a simple steady advection-

diffusion equation, found that using a weak (BR) boundary enforcement is clearly advanta-

geous. Further, in our past experience with simulation codes that strictly enforce Dirichlet

boundary conditions [14,15,76], coarse y− direction resolution leads to unusually high tur-

bulence production and high drag predictions. Given this, the ability to obtain reasonable

solutions with particularly coarse wall-normal resolution (∆y+
w ≈ 4.3) can be attributed at

least in part to the manner of the current wall boundary conditions enforcement. This state-

ment is subtstantiated by the results presented above that clearly indicate the effectiveness

of appropriately regulating slip at the wall in obtaining improved wall shear stress predic-

tions. Although LDG and BLDG have a more constraining effect on slip, it is important to

stress that they still permit a jump albeit significantly diminished.
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To make this discussion more concrete, we apply the various penalty fluxes described

in Section 4.1 to the problem considered by Collis [29]. Before we present these results,

we give a brief description of this model problem. The simple steady advection-diffusion

problem using a forcing f = 1 is given as

u,x = 1 + νu,xx (4.4)

with boundary conditions u(0) = u(1) = 0 and diffusivity ν = 0.01.

Figure 4.23 shows results computed using a discontinuous Galerkin discretization with

four elements using p = 0 (see 4.23a) and p = 2 (see 4.23b), respectively using BR, BLDG,

and LDG using ε = 100.0. The BR solution obtained using p = 0 is a special case where

the solution and jump are closely linked, in fact, at the physical boundary the solution

jump at the boundary and the interior solution are exactly equivalent. Now, the BLDG

flux effectively damps the solution jump, using a relatively high ε (see Figure 4.23(a)) and

thereby the solution in the interior of the element at the boundary that further affects the

solution in the interior of the domain. The LDG flux effectively damps the entire solution

as it acts on all the jumps i.e. on the entire solution. With the aid of this special case,

we see a direct correspondence between the jumps in the solution and interior solution

that highlights the relation that exists between the residual in the interior solution and the

solution jump at the element boundaries [19].

Importantly, at p = 2, shown in Figure 4.23(b), we see that the effect of using BLDG

is to introduce oscillations in the interior solution that is consistent with the observations

of Collis [29] using a hard enforcement of the boundary conditions. While the oscillations,

close to the sharp gradient on the right hand side boundary, are largely confined to the first

two elements, using the LDG method we see that the LDG affects all the elements in the

domain. By contrast, the BR flux that is unpenalized “captures” the sharp gradient in the

solution with a jump at the boundary and the effect on the adjacent elements is minimized

compared with BLDG and LDG. We believe that the success of the SBLDG in the three-

dimensional case can be attributed to similar behavior as the BR flux here.

Now, BLDG and LDG while regulating slip, likely constrain all components of the

solution at the channel wall approaching a hard boundary enforcement. This may explain

the observed increase in the shear stress predictions at the wall for these cases (refer to

Table 4.1 and 4.2). And these are consistent with the observations using discretizations that

strictly enforce the Dirichlet boundary conditions [14, 15].
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Meanwhile, SBLDG by allowing the flow to slip (which is related to the interior residual

[19]) tends to constrain the interior solution commensurate with the local resolution thereby

potentially leading to more reliable τw estimates. It is for this reason that we believe the

SBLDG approach to enforcing wall-boundary conditions may be considered effective in

mimicking the function of a wall-model. Note, the oscillations close to the wall using the

penalty fluxes in the total stress profiles, seen in Figures 4.1, 4.4, 4.7, 4.10, 4.15, 4.18,

and 4.22, are consistent with the observations here. Importantly, these oscillations are

largely confined within the element at the boundary even for the LDG case suggesting

that for the simulations considered thus far the slip at interelement boundaries, though

present, is not significant except perhaps for the Reτ = 395 simulation. This suggests that

a combination of SBLDG at the wall and LDG (with a conservative ε) may have potential

advantages at very coarse resolutions (see an illustration of this in the advection-diffusion

problem with a flux we term ILDG in Figure 4.26).

Before we conclude this chapter, we observe that action of the penalty has a straight-

forward interpretation in the steady advection-diffusion equation. Principally, this is due

to the direct relation that exits between the residual in the interior of the element and the

solution jumps [19]. Thus, modifying the jump at the boundary (element interfaces) has a

noticeable impact on the solution, especially in one-dimension.

However, the three-dimensional unsteady Navier-Stokes equations does not permit such

a simple interpretation. And while the introduction of penalty on the solution jumps may

introduce oscillations in the solution (see Figures 4.1, 4.4, 4.7, 4.10, 4.15, 4.18, and 4.22),

it does not render the solution useless. On the contrary, there is an improvement in the

turbulence statistics using large ∆y+
w .

In fact, we have observed an improvement in the non-linear stability of simulations

with the introduction of the penalty fluxes. Specifically, using the 4 × 4 × 4 with p = 3 at

Reτ = 100, the solution shows improved stability with ε = 100.0 for SBLDG, BLDG, and

LDG compared with BR. Further, the improvement in stablity is directly proportional to

the degree of penalization introduced. This suggests that improved non-linear stability may

relate to the dissipation introduced through the penalization [19]. However, the introduction

of the penalty is not sufficient to ensure non-linear stability and we address this issue in

more detail in the following chapter.
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4.4 Summary

Thus far, we have seen that the inclusion of a penalty, for the meshes considered upto this

point, enables the numerical viscous flux to better enforce the wall boundary conditions. As

a consequence, the near-wall dynamics are more faithfully modeled when compared with

the BR approach at very coarse resolutions (∆y+
w > 2). Thereby, we have seen improved

wall shear stress predictions even with low resolutions in the wall-normal direction. In the

process, the overall quality of all the statistics considered have shown a better agreement

with reference computations.

It is well-known that the choice of the numerical fluxes can affect accuracy, stability,

and consistency of the method [3, 44]. The results presented here certainly demonstrate, in

the practical setting of a turbulent channel, the effect of the numerical fluxes on accuracy.

Also, the higher resolution case with 4 × 4 × 8 mesh using p = 6 demonstrates the consis-

tency and convergence of the various fluxes as resolution is increased (jumps are reduced).

The minimal differences at higher resolutions using consistent numerical fluxes was also

observed by Bassi and Rebay [7] for compressible fluid flow.

It is important to note there may be a potential advantage in using LDG with a modest

value of ε (see Figure 4.22). A corresponding one-dimensional version, that we term ILDG,

that uses LDG in the interior element interfaces and BR at the physical boundaries produces

results that are remarkably similar to BR in Figure 4.26. Currently, the overall performance

of the SBLDG in improving results and the potential difficulty in selecting values of ε for

the interior interelement interfaces, makes SBLDG the flux of choice in the remainder of

this thesis.

Thus far, we have exploited just the inherent features of the current DG spatial dis-

cretization to obtain reasonable low-order statistics at moderate resolutions. In fact, the

penalty fluxes serve as computationally efficient manner to improve low-order statistics

that partially account for the reduced wall-normal resolution. Now, we hope to build on

this framework by introducing a VMS model to further reduce the required degrees of

freedom. More importantly, this will introduce additional flexibility for obtaining reliable

turbulence statistics at even lower resolutions that holds promise for achieving dramatic

savings in overall computational cost.
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Flux Type Slip τw uτ

BR -0.7916 1.2179 1.1025
SBLDG-BR 0.2596 1.1291 1.0615

SBLDG 0.2668 0.9748 0.9867
BLDG -0.0011 0.9781 0.9884
LDG -0.0011 0.9974 0.9980

Table 4.1: Parameters and results summary for a 8 × 4 × 8 mesh using p = 3 at Reτ = 100
using different numerical viscous flux with a penalty factor ε = 100.0. The element size in
wall units for this mesh topology is ∆x+ ≈ 157 and ∆z+ ≈ 52.3 in the streamwise and
spanwise directions, respectively. Also, using p = 3, the near-wall resolution based on the
collocation grid is ∆y+

w ≈ 4.35.

Flux Type Slip τw uτ

BR -0.5442 1.0670 1.0308
SBLDG-BR 0.2244 0.9391 0.9668

SBLDG 0.2299 0.8575 0.9242
BLDG -0.0007 0.8827 0.9377
LDG -0.0007 0.8755 0.9338

Table 4.2: Parameters and results summary for a 4 × 4 × 8 mesh using p = 3 at Reτ = 100
using different numerical viscous flux with a penalty factor ε = 10.0. The element size in
wall units for this mesh topology is ∆x+ ≈ 314 and ∆z+ ≈ 52.3 in the streamwise and
spanwise directions, respectively. Also, using p = 3, the near-wall resolution based on the
collocation grid is ∆y+

w ≈ 4.35.

Flux Type Slip τw uτ

BR 0.0867 0.9851 0.9904
SBLDG-BR 0.1806 0.9692 0.9823

BLDG 0.0018 0.9753 0.9853
LDG 0.0018 0.9805 0.9880

Table 4.3: Parameters and results summary for a 4 × 4 × 8 mesh using p = 6 at Reτ =
100 using different numerical viscous flux. The element size in wall units for this mesh
topology is ∆x+ ≈ 314 and ∆z+ ≈ 52.3 in the streamwise and spanwise directions,
respectively. Also, using p = 6, the near-wall resolution based on the collocation grid is
∆y+

w ≈ 1.62.



102 Chapter 4. Boundary Conditions Enforcement

Flux Type Slip τw uτ

SBLDG 0.8482 1.006 1.002
BR∗ 0.0020 1.001 1.000

Table 4.4: Simulations and result summary for a 16×4×16 mesh using p = {6, 5, 5, 6} at
Reτ = 180 using different numerical viscous fluxes. The element size in wall units for this
mesh topology is ∆x+ ≈ 141 and ∆z+ ≈ 47 in the streamwise and spanwise directions,
respectively. Also, using p = 4, the near-wall resolution based on the collocation grid is
∆y+

w ≈ 2.8 (∆y+
m ≈ 45). The ∗ indicates that this is a higher overall resolution DG DNS

with a 16 × 16 × 16 mesh using p = 4

Flux Type Slip τw uτ

SBLDG -0.03584 0.9977 0.9983
LDG -0.03647 1.0144 1.014

Table 4.5: Parameters and results summary for a 8×8×12 mesh using p = 4 at Reτ = 395
using different numerical viscous fluxes. The element size in wall units for this mesh
topology is ∆x+ ≈ 155 and ∆z+ ≈ 51 in the streamwise and spanwise directions, re-
spectively. Also, using p = 4, the near-wall resolution based on the collocation grid is
∆y+

w ≈ 2.8(∆y+
m ≈ 25).
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Figure 4.1: Effect of different numerical viscous fluxes on meanflow and viscous stress
profiles for Reτ = 100 computed on a 8 × 4 × 8 mesh using p = 3: DNS; BR;

SBLDG-BR; SBLDG; LDG.
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Figure 4.2: Effect of different numerical viscous fluxes on Reynolds stress and turbulence
intensity profiles for Reτ = 100 computed on a 8 × 4 × 8 mesh using p = 3: DNS;

BR; SBLDG-BR; SBLDG; LDG.



Chapter 4. Boundary Conditions Enforcement 105

0.5 1 10 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

k
x

E
uu

,E
vv

,E
w

w
 

(a)

10
0

10
1

10
2

10
−7

10
−5

10
−3

10
−1

10
1

k
z

E
uu

,E
vv

,E
w

w
 

(a)

Figure 4.3: Effect of different numerical viscous fluxes on streamwise and spanwise spec-
tra for Reτ = 100 computed on a 8× 4× 8 mesh using p = 3: DNS; BR;
SBLDG-BR; SBLDG; LDG.
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Figure 4.4: Effect of different numerical viscous fluxes on meanflow and viscous stress
profiles for Reτ = 100 computed on a 8 × 4 × 8 mesh using p = 3: DNS; BR;

SBLDG; LDG.
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Figure 4.5: Effect of different numerical viscous fluxes on streamwise and spanwise spec-
tra for Reτ = 100 computed on a 8 × 4 × 8 mesh using p = 3: DNS; SBLDG;

LDG.
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Figure 4.6: Effect of different numerical viscous fluxes on Reynolds stress and turbulence
intensity profiles for Reτ = 100 computed on a 8 × 4 × 8 mesh using p = 3: DNS;

BLDG; LDG.
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Figure 4.7: Effect of different numerical viscous fluxes on meanflow and turbulence inten-
sity profiles for Reτ = 100 computed on a 4 × 4 × 8 mesh using p = 3: DNS;
BR; SBLDG; BLDG; LDG.



110 Chapter 4. Boundary Conditions Enforcement

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

y/δ

R
uv

(a)

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

y+

u rm
s,v

rm
s,w

rm
s 

(b)

Figure 4.8: Effect of different numerical viscous fluxes on Reynolds and viscous stress for
Reτ = 100 computed on a 4 × 4 × 8 mesh using p = 3: DNS; BR;
SBLDG; BLDG; LDG.
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Figure 4.9: Effect of different numerical viscous fluxes on streamwise and spanwise spec-
tra for Reτ = 100 computed on a 4× 4× 8 mesh using p = 3: DNS; BR;
SBLDG; BLDG; LDG.
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Figure 4.10: Effect of different numerical viscous fluxes on meanflow and turbulence in-
tensity profiles for Reτ = 100 computed on a 4 × 4 × 8 mesh using p = 3: DNS;

SBLDG-BR; SBLDG.
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Figure 4.11: Effect of different numerical viscous fluxes on streamwise and spanwise
spectra for Reτ = 100 computed on a 4 × 4 × 8 mesh using p = 3: DNS;
SBLDG-BR; SBLDG.
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Figure 4.12: Effect of different numerical viscous fluxes on Reynolds, viscous, and total
stress profiles for Reτ = 100 computed on a 4 × 4 × 8 mesh using p = 3: DNS;
SBLDG-BR; SBLDG.
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Figure 4.13: Effect of different numerical viscous fluxes on meanflow and turbulence in-
tensity profiles for Reτ = 100 computed on a 4 × 4 × 8 mesh using p = 6: DNS;

BR; SBLDG-BR; BLDG; LDG.
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Figure 4.14: Effect of different numerical viscous fluxes on streamwise and spanwise
spectra for Reτ = 100 computed on a 4 × 4 × 8 mesh using p = 6: DNS; BR;

SBLDG-BR; BLDG; LDG.
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Figure 4.15: Effect of different numerical viscous fluxes on Reynolds and viscous stress
for Reτ = 100 computed on a 4 × 4 × 8 mesh using p = 6: DNS; BR;
SBLDG-BR; BLDG; LDG.



118 Chapter 4. Boundary Conditions Enforcement

10
−1

10
0

10
1

10
2

10
3

0

5

10

15

20

25

y+

U
+

(a)

0 20 40 60 80 100 120 140 160 180
0

0.5

1

1.5

2

2.5

3

y+

u rm
s,v

rm
s,w

rm
s 

(b)

Figure 4.16: Effect of SBLDG numerical viscous flux on meanflow and turbulence inten-
sity profiles for Reτ = 180 computed on a 16 × 4 × 16 mesh using p = {6, 5, 5, 6}:
DNS; 16 × 16 × 16 using p = 4 with BR; SBLDG.
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Figure 4.17: Effect of SBLDG numerical viscous flux on streamwise and spanwise spectra
for Reτ = 180 computed on a 16 × 4 × 16 mesh using p = {6, 5, 5, 6}: DNS;
16 × 16 × 16 using p = 4 with BR; SBLDG.
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Figure 4.18: Effect of SBLDG numerical viscous flux on Reynolds , viscous, and total
stress profiles for Reτ = 180 computed on a 16 × 4 × 16 mesh using p = {6, 5, 5, 6}:
DNS; 16 × 16 × 16 using p = 4 with BR; SBLDG.
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Figure 4.19: Effect of numerical viscous fluxes on meanflow and viscous stress profiles
for Reτ = 395 computed on a 8 × 8 × 12 mesh using p = 4: DNS; SBLDG;

LDG.
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Figure 4.20: Effect of different numerical viscous fluxes on streamwise and spanwise
spectra computed at y+ ≈ 20 for Reτ = 395 computed on a 8 × 8 × 12 mesh using p = 4 :

DNS; SBLDG; LDG.
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Figure 4.21: Effect of different numerical viscous fluxes on Reynolds stress and turbulence
intensity profiles for Reτ = 395 computed on a 8 × 8 × 12 mesh using p = 4: (a)
DNS; SBLDG; LDG. (b) DG with BR flux on a 8 × 8 × 18 using
{6, 6, 5, 4, 4, 5, 6, 6}; SBLDG; LDG.
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Figure 4.22: Effect of different numerical viscous fluxes on viscous and total stress for
Reτ = 395 computed on a 8 × 8 × 12 mesh using p = 4: DG with BR flux on a
8 × 8 × 18 using {6, 6, 5, 4, 4, 5, 6, 6}; SBLDG; LDG.



Chapter 4. Boundary Conditions Enforcement 125

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

x

U

BR, p=10
BLDG, p=0
LDG, p=0
BR, p=0

(a)

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

U

BR, p=10
BLDG, p=2
LDG, p=2
BR, p=2
BR, p=0

(b)

Figure 4.23: A comparison of the solution for different numerical viscous fluxes using
ε = 100.0 using two polynomial orders. (a) p = 0; (b) p = 2. The p = 10 DG solution
obtained using BR flux is used as reference.
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Figure 4.24: A comparison of the solution for different numerical viscous fluxes using
ε = 100.0 using high resolution. (a) p = 5; (b) p = 10.
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Figure 4.25: The effect of variation of ε on the solution for the different penalty based
fluxes: (a) BLDG; (b) LDG (a) ILDG. ILDG is a special case of the LDG flux that uses BR
at the physical boundaries.
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Figure 4.26: A comparison of the solution using ILDG with BR at two different polyno-
mial orders. (a) p = 2 ;(b) p = 5.



Chapter 5

Local Variational Multi-Scale — �V MS

In this chapter, we develop strategies for SGS modeling by implementing a VMS model in

the current DG spatial discretization. During the course of the spatial resolution study in

Chapter 3, we mentioned the importance of sufficient resolution in the spanwise direction

to ensure non-linear stability. Therefore, we first address this issue using two approaches,

namely, spectral filtering [61] and polynomial dealiasing [67]. Next, we introduce the VMS

model, described in Chapter 2, to account for SGS effects. Simultaneously, we comment

on the role of the numerical viscous fluxes studied in Chapter 4 in the context of �VMS.

Following the pattern in earlier chapters, we explore these methods at Reτ = 100 before

we extending them to higher Reynolds numbers.

5.1 Strategies for Non-linear Stability

We observed the presence of aliasing [13, 58] and SGS effects, clearly seen by the pile

up of energy at the high wavenumbers in the energy spectra. Fortunately, the relatively

high resolution in the cases considered so far ensures that the solutions remain stable. In

particular, the spanwise resolution appears to be crucial for maintaining non-linear stabil-

ity. By having sufficient resolution in this direction, the fatal effects of low resolution are

minimized.

Ideally, in the context of LES, one coarsens the mesh in all three coordinate directions.

Further, since the effective number of degrees of freedom are reduced, we can expect a

heightening of the effects of aliasing and SGS. Therefore, viable options to counter these

effects needs to be established.

A SGS model, that enhances dissipation in the resolved scales can improve the non-

linear stability of a simulation. However, a VMS model that acts only on the smallest

resolved scales may not provide sufficient dissipation to ensure non-linear stability. On

the other hand, a traditional constant coefficient Smagorinsky model that acts on all the

resolved scales may be effective in producing stable calculations. However, conventional

wisdom suggests that the dissipation introduced by the Smagorinsky model may lead to

129
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excessive damping of the turbulent fluctuations [48, 76].

5.1.1 Polynomial Dealiasing (PD)

Recently, Kirby and Karniadakis [67] developed alogorithms to successfully reduce alias-

ing in the context of one-dimensional Burgers equation using a DG discretization. They

employ over-integration (super-collocation) coupled with a Galerkin projection to dealias

the solution. They demonstrate the effectiveness of PD for incompressible channel flow

at Reτ = 395 using a Galerkin spectral/hp element method [67]. While this particular ap-

proach is new, a common strategy employed for dealiasing in global spectral methods is the

3/2−rule [13]. This approach is widely used to dealias simulations that have a quadratic

non-linearity such as the convection term in the incompressible Navier-Stokes equations.

Along the same lines, Kirby and Karniadakis [67] advocate the use of a super-collocation

method for dealiasing. This involves employing a greater number of quadrature points (q)

than the number of modes (L) used to represent the solution. Specifically, they suggest that

for a quadratic non-linearity, one should use a value of 3L/2, similar to the 3/2−rule [13].

Currently, in the results presented thus far, we use a quadrature order, in each direction,

as q = L + 1 that ensures that element integrals evaluations are sufficiently accurate for

obtaining convergence with smooth solutions.

The PD approach of Kirby and Karniadakis [67] involves an increase in the computa-

tional cost. However, the results obtained by Kirby and Karniadakis [67], using a model

one-dimensional Burgers problem, suggests that the increase is required just for the convec-

tion term that may potentially offset the cost factor. In fact, for channel flow simulations,

the 3/2−rule is applied only in the planes (x − z plane) [13]. Here, as a first attempt to-

wards dealiasing using this approach [67], we apply a super-collocation approach for both

the convection and diffusion terms in all three coordinate directions.

A potential advantage of using polynomial dealiasing is increased accuracy since all

the integral evaluations are done using a higher quadrature order. Importantly, PD has no

forseeable adverse impact on the the solution. While the disadvantage is an increase in

the computational cost. Now, it is important to note that, in VMS, modeling is confined to

the smallest resolved scales [28, 46]. As a result, there is no direct mechanism present to

remove aliasing errors that equally affect all the resolved scales including the large scales.

Importantly, a major feature attributed to the success of prior VMS implementations is the

preservation of accuracy of the large resolved scales by having no explicit model acting
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on them. The authors are not aware of any VMS implementation that has not employed

dealiasing. Therefore, preventing the adverse effects of aliasing errors on the large scales

is necessary to obtain results that are comparable with prior VMS implementations [47,48,

71, 76, 78].

5.1.2 Spectral Filtering (SF)

The Boyd-Vandeven Spectral Filter (SF) was used by Levin and colleagues [61] in a spec-

tral element method for ocean modeling. They apply filtering on the vorticity and diver-

gence fields to achieve non-linear stability. Here, we apply the same SF to the residual after

each TVD-RK substep. The SF is described below.

σ(i/L, s) =

⎧

⎨

⎩

1, if i < s
1
2erfc(2

√
Lχ(θ)(|θ| − 1

2)), θ = i−s
L−s

if s ≤ i ≤ L
(5.1)

and

χ(θ) =

⎧

⎨

⎩

1, if θ = 1
2

√

− log(1−4Ω2)
4Ω2 , Ω(θ) = |θ| − 1

2 elsewhere
, (5.2)

where i is a index for the modes (0 ≤ i ≤ L) and L = p + 1. The spectral shift parameter

s biases the filtering action towards the higher modes (See Levin et al. [61] for additional

details). The transfer function in modal space can be seen in Figure 5.1 for various polyno-

mial orders. The mechanism by which aliasing errors are managed using this approach is

by enhancing the dissipation (filtering) in the smallest resolved scales (or high wavenum-

bers in spectral space). Thus, preventing the energy from accumulating on the smallest

scales.

The potential advantages of spectral filtering are

1. Enhancing dissipation at the high wavenumbers improves non-linear stability.

2. The transfer function in three-dimensional can be constructed using a tensor prod-

uct approach allows for a natural implementation of the spectral filter in the current

framework.

3. The spectral shift, s, reduces the impact of filtering on the large scales that is similar

in spirit to the VMS model.

4. This is a computationally efficient option compared with polynomial dealiasing [67].
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A potential disadvantage of this approach is reduced accuracy. Also, there is no a priori

rationale for picking the filter parameters.

5.1.3 Numerical Viscous Fluxes

The importance of boundary enforcement using the numerical fluxes was shown to have

significant impact on the accuracy of the wall shear stress predictions, particularly while

using coarse grids (∆y+
w ≥ 2). The energy spectra and viscous stress profiles, with the

introduction of jump penalty, showed improvements consistent with enhanced dissipation.

While PD and SF are strategies that address non-linear stability directly, the potential of

penalty numerical fluxes in improving non-linear stability in the context of �VMS is also

explored here. This is significant since the computational overhead incurred with the into-

duction of a solution jump penalty is negligible.

5.2 Numerical Results Preliminaries

The introduction of SF, PD, numerical fluxes, and �VMS individually and in combination

lead to number of parameters. For quick reference, we describe these parameters (although

they may have been defined before) and introduce/recall the symbols used to represent

them.

1. p, the polynomial order.

2. q, the quadrature order for a given p, this is an important parameter since a value of

q > p + 2 ≡ L is considered a super-collocation method that commonly referred to

as Polynomial Dealiasing (PD) [67], where L is the number of modes L = p + 1.

3. Le, partition parameter that divides the modal space of an element (e) such that

Ppe(Ωe) = {0, . . . , Le, . . . , p} in each direction. Thus, modes less than Le are con-

sidered large scales while the remaining modes including Le form the small scales.

4. s, the spectral shift for the Spectral Filter (SF) [61] is similar to Le. Therefore,

modes less than s are not directly affected by the filter, while the modes including s

are influenced by the action of filtering.

5. ε > 0 is the penalty factor that has the same meaning as before in Chapter 4. Inci-

dently, we set ε = 0.0 to recover the BR numerical viscous flux [6].
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6. For simplicity, we use a Smagorinsky coefficient, Cs = 0.1 for all the cases presented

here that has been successful in other VMS implementations [47, 48, 71, 76, 78].

7. Slip refers to the planar averaged mean streamwise velocity at the wall i.e solution

jump in the streamwise velocity at the channel wall.

The total number of simulation parameters present here, for reasons of limited computa-

tional resources, prevents an extensive study at Reynolds number greater than Reτ = 100.

Therefore, we explore the use of the parameters listed above in the context of �VMS at

this lower Reynolds and then present cases at higher Reynolds number to corroborate the

observations at the lower Reynolds number. Also, unless explicitly stated the numerical

viscous flux is BR [6].

5.3 Non-linear Stability – Filtering and Dealiasing

We begin with a 4 × 4 × 4 mesh using p = 5 that gives a planar resolution in wall units as

∆x+ ≈ 314 and ∆z+ ≈ 104 with a minimum near-wall resolution based on the collocation

grid ∆y+
w ≈ 2.14 (∆y+

m ≈ 25). As mentioned in Chapter 3, using p = 3 with this mesh the

simulation is non-linearly unstable and that applies even at p = 5. Recall that doubling the

number of elements from 4 to 8 (∆z+ ≈ 50) in the spanwise direction resulted in stable

computations even with p = 3.

Now, Figures 5.2, 5.3, and 5.4 show the profiles of meanflow, rms, streamwise and

spanwise direction spectra, Reynolds stress, and an overlay of the viscous and total stress

profiles for the simulations listed in Table 5.1. This study evaluates the effectiveness of

PD [67] and SF [61] for ensuring non-linear stability. Firstly, using s = 3 is sufficient to

ensure stability for long time computation. Using s = 1, we introduce filtering on a wider

range of scales that results in a greater underprediction of τw compared with s = 3 (see

Figure 5.2(a)). To evaluate the efficacy of PD, using the same mesh and polynomial order,

we increase the quadrature order from q = 7 to q = 10. Although this is one quadrature

order greater than 3L/2 for illustrative purposes, we have confirmed that a value of 3L/2

is sufficient to ensure non-linear stability.

The meanflow profile for PD, shown in Figure 5.2(a) results in a slight overprediction

of drag compared with the reference [14]. Now, a comparison of the rms profiles, seen

in Figure 5.2(b), shows an overall better agreement with reference DNS [14] for PD with
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respect to the two SF simulations. It is important to point out that we compute all our

statistics on the collocation grid. Therefore, the spectra for the cases that employ PD span

a wider number of wavenumbers. First, we note that using this resolution, the artificial

accumulation of energy at the highest wavenumbers is reduced (see Figure 5.3). Note the

good correspondence of the energy spectra for both PD and SF with s = 3 in the largest

scales i.e. low wavenumbers. Meanwhile, the dissipative effect of spectral filtering is

confirmed by the lower energy in the spectra for s = 1 with respect to the other two cases

shown in Figure 5.3.

Importantly, both approaches are successful in reducing aliasing errors sufficiently that

lead to stable computations. However, solutions obtained using PD [67] show improved

low-order predictions that suggests a potential advantage when compared to spectral filter-

ing [61]. Meanwhile, the Reynolds stress and total stress, shown in Figure 5.4, for all the

cases show reasonable agreement with the reference [14]. Finally, the viscous stress pro-

files for cases employing filtering, shown in Figure 5.4(b), have a noticeably more promi-

nent viscous sublayer compared to super-collocation method. This further supports the

claim that the action of spectral filtering is dissipative in nature.

These results demonstrate the suitability of PD as an effective strategy for enhancing

stability whilst simultaneously isolating SGS effects. This is seen by the higher energy

content in the spectra, clearly observed in the u component of x−direction energy spectra

shown in Figure 5.3(a). Meanwhile, even with s = 3, required to ensure stability, the

dissipation introduced by spectral filtering makes the role SGS modeling unclear.

Later in this chapter, we explore a strategy, involving the use of jump penalized viscous

numerical fluxes (see Chapter 4), that allows the use of a milder spectral filter i.e. a larger

spectral shift (s) to control aliasing errors in the context of �VMS. This approach is attrac-

tive as the computational cost associated with spectral filtering [61] is lower than that for

polynomial dealiasing [67].

5.4 �VMS Modeling

Before we present results with SGS modeling, it is important to discuss parameter selection

in the context of �VMS.
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5.4.1 Parameter Selection

The improved non-linear stability achieved through PD allows a greater flexibilty in the

choice of the mesh and polynomial order. Additionally in �VMS, the partition Le that

separates the resolved scales as large and small is required. This is a crucial parameter that

determines the accuracy of VMS simulations [47, 48, 76, 78].

First, we select the mesh and polynomial order based on the resolution study conducted

in Chapter 3 that accounts for the inherent dissipation present in the spatial discretization

[19,44]. From Chapter 3, at Reτ = 100 a 4 × 8 planar mesh with p > 4 is needed to ensure

both non-linear stability and low numerical dissipation. Here, we have demonstrated that a

4 × 4 planar mesh using p = 5 with PD is sufficient to produce results with no percievable

adverse effects of numerical dissipation.

Further, the resulting element sizes in viscous wall units in the x− and z−directions

correspond to well-known length scales of the physical structures in the flow [54, 55, 85].

Plots of near-wall streamwise and spanwise direction velocity correlations for Reτ = 100

extracted from a 8 × 8 × 8 mesh using p = 6 simulation are shown in Figure 5.5. The

correlations for all three velocity components are considerably diminshed by x+ ≈ 400 and

z+ ≈ 100 (mean streak spacing) in the streamwise and spanwise directions, respectively

[54, 55, 85]. Also, notice the sharp drop-off in the correlation at x+ ≈ 200 and z+ ≈ 50.

Recently, Ramakrishnan and Collis [76, 78] successfully used these length scales to

identify the large scales in their VMS implementation. The numerical discretization in their

study employed a Fourier basis in the planar directions that allows a transparent interpreta-

tion of modes and the associated physical length scales, leading to a surgical identification

of the large and small scales. Analogous to their approach, we select Le = 2 that con-

strains the first two modes (constant and linear) in each direction of an individual element

to represent the large scales and the remaining modes form the small scales. This ensures

that the constant mode that corresponds to the individual element size is in the large scale

space. Meanwhile, the linear mode that divides the element is representative of the length

scales where the x− and z− direction velocity correlations show a sharp drop-off (see Fig-

ure 5.5). In doing so, we largely ensure that length scales ∆x+ ≥ 200 and ∆z+ ≥ 50 that

relate to the near-wall coherent structures form the large scales.

Finally, the elements in the wall-normal direction are stretched such that the first ele-

ment size in the wall-normal direction is ∆y+
m ≈ 25. This length scale matches the diameter
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of a typical near-wall structure [54, 55, 85]. Ramakrishnan and Collis [78] apply scale sep-

aration in just the planar directions in lieu of all three coordinate direction introduced in the

original implementation by Hughes et al. [48]. Results of similar quality obtained by the

two approaches suggest that scale separation in the wall-normal direction does not greatly

influence the solution. Here, we follow the original implementation of Hughes et al. [48]

that likely results in a larger small scale space than that obtained in the implementation

of Ramakrishnan and Collis [78]. Finally, we observe that with Le = 2 in the near-wall

region, we ensure that ∆y+ ≈ 25 corresponding to the constant mode, related to the size

of the coherent structures, lies in the large scale space.

5.4.2 Polynomial Dealiasing

A comparison of the results obtained using SF with s = 3, PD, and �VMS-PD is presented

in Figures 5.6, 5.7, and 5.8. The simulation parameters and results are found in Table 5.1.

The introduction of the VMS model leads to improved low-order statistics that can be

seen in Figure 5.6. The model dissipation, accounting for the SGS scales, leads to a mean-

flow profile, shown in Figure 5.6(a), that is in better agreement with the reference [14].

Similarly, the rms profiles, seen in Figure 5.6(b), for �VMS-PD are in good correpondence

with DNS [14] compared with just PD. Consequently, there is a reduction in the peaks of

the u and w components of the rms profiles for the former when compared to the latter.

The energy spectra, shown in Figure 5.7, reveals that an overall better agreement with

the reference [14] is achieved through enhanced model dissipation at the higher wavenum-

bers. The multi-scale model introduces modeling in the range of scales most affected

by SGS i.e. the smallest resolved scales. The enhanced model dissipation in the high

wavenumbers coupled with dealiasing prevent the accumulation of energy in the resolved

scales. Thereby, the interactions between the resolved large and small scales are improved.

Thus, although there is no direct modeling on the large scales, the large scales influence

the effect of modeling through the non-linear interactions leading to improved predictions.

This provides insight into the mechanism of multi-scale modeling that is clearly superior

to traditional approaches that introduces explicit modeling on all the resolved scales [77].

Incidently, we note that the overall dissipative effect of the VMS model with PD (�VMS-

PD) is less compared to the SF with s = 3. Finally, the stress profiles, shown in Figure 5.8,

exhibit trends consistent with the introduction of model dissipation. Thus, demonstrating
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the effectiveness of VMS modeling with polynomial dealiasing for a DG spatial discretiza-

tion.

5.4.3 Role of Numerical Fluxes and Spectral Filtering

Let us again consider the Reτ = 100 case employing a 4 × 4 × 4 mesh using p = 5. We

examine the results obtained with the cases listed below to highlight the role of Le, viscous

numerical fluxes, and spectral filtering in �VMS modeling.

1. Standard constant coefficient Smagorinsky with wall-damping i.e. �VMS with Le =

0.

2. �VMS with Le = 1.

3. �VMS with Le = 2 and SBLDG.

4. �VMS with Le = 2 using s = 4 and SBLDG.

A summary of the simulation parameters and results are recorded in Table 5.2.

Firstly, the meanflow profile, seen in Figure 5.9(a), indicates that the standard Smagorin-

sky model is highly dissipative, as expected. Although not shown here, we note that the

other statistics for the Smagorinsky model exhibit signs consistent with the excessive damp-

ing of turbulent fluctuations. Here, we reiterate that the constant coefficient Smagorinsky is

a limiting case of �VMS with Le = 0 i.e. all the resolved scales are in the small scale space

(where the explicit SGS model is active). Next, using BR, we obtain stable computation

with �VMS only when Le ≤ 1. Meanwhile, we achieve stability with �VMS using Le = 2

by choosing SBLDG in lieu of BR. Finally, we introduce a mild SF (s = 4) in the above

case to account for the presence of aliasing.

The �VMS and BR combination, that requires Le = 1, results in an underprediction in

τw (see Figure 5.9(a)). The choice of the partition Le = 1 allows the model acts directly

on the dynamically important large scales. Recall that using large ∆y+
w leads to a higher

energy content in the spectra, attributed to the slip at the channel walls. Therefore, it is

likely that enhancing model dissipation on the energy containing scales is required to im-

prove stability. However, this results in an excessive damping of the turbulent fluctuations.

Importantly, the improvement in the meanflow profile for �VMS with Le = 1 over the tra-

ditional Smagorinsky model demonstrates the superiority of the VMS modeling paradigm.
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Simultaneously, the importance of the Le in determining the accuracy of the large scales

and thereby the quality of the results obtained is highlighted.

Clearly, the enhanced stability with SBLDG may be attributed to the introduction of the

jump penalty. The enhanced stability of SBLDG with �VMS suggests that introduction of

the jump penalty has a stabilizing influence on the dynamically important large scales. This

is not surprising since the largest resolved scales are affected by the geometry of the domain

through the boundary conditions. Therefore, the penalty imposed on the fluctuating slip at

the channel walls through the viscous numerical flux may have a beneficial effect on the

large scales. As mentioned earlier, the penalization potentially introduces dissipation [19]

in the numerical scheme and this could also improve the stability of the simulation.

Now, the �VMS-SBLDG with Le = 2 results in a slight overprediction in drag (see

Figure 5.9(a)). Now, on the same plot, note that introducing a mild SF (s = 4) enhances

dissipation that results in a slight underprediction in the wall shear stress. The differences

in the rms and stress profiles for the above cases, seen in Figures 5.9(b) and 5.10, reflect

the effects of enhancing dissipation through modeling and spectral filtering.

As usual, an examination of the energy spectra, seen in Figure 5.11, provides additional

insight into effect of the modeling in �VMS. Using Le = 1, where the model directly affects

a wider range of scales than the cases with SBLDG, the spectra shows a lower energy

content than the reference [14]. Thus, providing further evidence of the adverse effects of

introducing model dissipation on the large scale structures in the flow. By contrast, the

�VMS-SBLDG without filtering is not able to fully account for aliasing errors resulting in

a higher energy content than the reference [14]. However, enhancing the dissipation at the

highest wavenumbers (smallest resolved scales) through a SF with s = 4 leads to an overall

better agreement of the energy dynamics with the reference [14]. These results reinforce

the need for an effective dealiasing strategy with �VMS. Also, the success of the current

modeling strategy is significant since it is computationally more efficient compared with

the �VMS-PD combination.

5.4.4 Importance of Small Scales Space

We have demonstrated the importance of the partition (Le) in isolating the energy contain-

ing scales, in other words, ensuring a sufficient large scales space. Let us now examine the

effect of varying the partition from Le = 2 to Le = 3, effectively reducing the small scales

space, using SBLDG with the current mesh and polynomial order (refer to Table 5.2).
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The meanflow profile, seen in Figure 5.12(a), shows that reducing the small scale space

leads to a significant overprediction in τw. The rms profiles, particularly in the spanwise and

wall-normal components, show a significantly higher peak for Le = 3 when compared with

the cases employing Le = 2. As usual, the effects of reducing model dissipation are most

clearly observed in the energy spectra plotted in Figure 5.13. Note the progressive increase

in the energy content of the streamwise component, shown in Figure 5.13(a), starting from

Le = 2 with filtering to Le = 3 without filtering. Further, the difference in the energy

content between Le = 2 and Le = 3 appears to be of the same magnitude as the difference

that exists between the Le = 2 case with and without filtering.

It is important to understand that a change in the partition of just one mode leads to

reduction in the small scale space in all three directions and across all the elements. From a

modeling perspective, a diminished small scale space increases the effect of the unresolved

scales on the resolved large scales. Simultaneously, the explicit modeling is confined to

shorter range of scales. Another subtle feature of multi-scale modeling is the indirect effect

of modeling on the large scales through the nonlinear interactions between all the resolved

scales. Also, it is likely that the effects of aliasing are more prounounced for Le = 3. It

is for all the above reasons that we witness a dramatic change in the solution going from

Le = 2 to Le = 3.

5.4.5 Local Polynomial Enrichment

Now, exploiting the capabilities of �VMS we introduce local polynomial refinement. Let

us vary the polynomial order from a uniform p = 5 to p = {6, 5, 5, 6} at Reτ = 100.

The simulation parameters and results are found in Table 5.2. We retain the same partition

Le = 2 that corresponds to the important length scales in the flow [76, 77]. And similarly,

we employ the same spectral shift s = 4 for direct comparison with the uniform p = 5

case.

Immediately, we observe an improvement in the meanflow and rms profiles, shown in

Figure 5.14, for the variable polynomial order case with respect to the uniform p = 5 case.

Moreover, the highest resolved wavenumbers in the energy spectra, shown in Figure 5.15,

appear to have benefitted from the increased resolution i.e. a wider small scale space.

In VMS, the greater scale separation reduces the impact of the unresolved scales on the

largest resolved scales [76,77]. Consequently, the accuracy of the large scales are improved

leading to better predictions. Further, the local p−refinement at the channel walls leads to
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better prediction of the velocity gradients due to a smaller ∆y+
w . Thus, the stress profiles,

shown in Figure 5.16, for the variable polynomial order show better correspondence with

the reference [14] (clearly observed in the total stress profile in Figure 5.16(b)).

The efficacy of local polynomial refinement in improving the solution efficiently using

�VMS illustrates the potential of the current framework for accurate and efficient simula-

tion of wall-bounded turbulence. Moreover, in general configurations (see Figure 2.3), the

ability to change the partition (Le) along with the local hp−refinement holds promise for

surgical modeling of turbulent flows in complex geometries.

5.4.6 Moderate Reynolds Number

Finally, we extend �VMS to a higher Reynolds number, namely, Reτ = 395. The details

of the simulation are listed in Table 5.3. The domain size is chosen such that with p = 5,

we can employ the same partition and spectral shift as the Reτ = 100 case. Specifically,

the mesh and domain size are (4 × 9 × 6) and (π, 2, π/2) in the x, y, and z directions,

respectively.

The meanflow profile, shown in Figure 5.17(a), is in reasonable agreement with DNS

[69]. However, the combination of the VMS model, SF, and the inherent dissipation at

the current resolution lead to a slight underprediction in the wall shear stress similar to the

Reτ = 100 case. Perhaps, local polynomial refinement in the near-wall region will improve

the τw prediction, as observed with the Reτ = 100 above. Meanwhile, the rms profiles,

energy spectra and stress profiles, shown respectively in Figures 5.17(b), 5.18, and 5.19,

all show reasonable agreement with the reference [69].

The similarity in the quality of results obtained at this Reynolds number to that ob-

served with Reτ = 100 illustrates the effectiveness of parameter selection developed here.

Simultaneously, preliminary resolution guidelines for obtaining reliable low-order statistics

for wall-bounded turbulence using �VMS are established.

5.5 Summary

The introduction of �VMS in the DG method developed in Chapter 3 and 4 leads to an over-

all reduction in computational cost in terms of required degrees of freedom. Also, in order

to ensure the non-linear stability of the computations, we have studied two approaches:

spectral filtering [61] and polynomial dealiasing [67]. Both approaches, using appropriate
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parameters, lead to stable calculations. Spectral filtering is a found to be a computation-

ally efficient approach to minimize the effects of aliasing while PD involves increasing

the quadrature order. In fact, the combination of SBLDG and spectral filtering provides

a computationally efficient strategy for modeling in �VMS. Unfortunately, this approach

introduces a number of parameters (s,ε) in addition to the model parameters that need to

be specified. Further, the selection of these parameters for general flow configurations will

require numerical experimentation. Meanwhile, the �VMS-PD combination requires just

one additional well-defined parameter (q = 3L/2), leading to an overall simpler modeling

strategy. Moreover, we note that results obtained using a combination of PD with �VMS

are in particularly good agreement with reference DNS.

In �VMS, we choose the element sizes according to the size of the near-wall turbulent

structures. This allows for partition selection (Le) to be based on the important length

scales present in the flow. This approach to partition selection, known to be successful for

turbulent channel flows [76, 77], is reaffirmed here.

Overall, the locality of the DG/VMS framework allows improved predictions through

an efficient distribution of the required degrees of freedom. Here, we have succesfully

exploited this capability for the turbulent channel flow. This feature of �VMS along with

the ability to specify model parameters independently on each element holds promise for

accurate and efficient turbulence simulation in complex geometries. Thus, exploring the

potential of �VMS by fully exploiting its capabilities will be a logical extension for future

work.
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Model p q s Le Slip τw uτ

SF 5 7 1 - 0.1319 0.8487 0.9207
SF 5 7 3 - 0.1590 0.8708 0.9325
PD 5 10 - - 0.2011 0.9558 0.9770

�VMS-PD 5 10 - 2 0.1816 0.9142 0.9554

Table 5.1: Simulation parameters and result summary for a 4 × 4 × 4 using p = 5 to com-
pare spectral filtering against dealiasing Reτ = 100. The element size in wall units for this
mesh topology is ∆x+ ≈ 314 and ∆z+ ≈ 104.3 in the streamwise and spanwise direc-
tions, respectively. The minimum wall-normal direction resolution based on the standard
collocation grid is ∆y+

w ≈ 2.14 (∆y+
m ≈ 25).

Model Flux p q ε s Le Slip τw uτ

SMAG BR 5 7 0.0 - 0 -0.0827 0.7586 0.8706
�VMS BR 5 7 0.0 - 1 0.1321 0.8559 0.9246
�VMS SBLDG 5 7 100.0 - 2 0.3525 0.9548 0.9762

�VMS-SF SBLDG 5 7 100.0 4 2 0.2216 0.9037 0.9498
�VMS SBLDG 5 7 100.0 - 3 0.4108 1.0501 1.0237

�VMS-SF SBLDG {6, 5} {8, 7} 10.0 4 2 0.1408 0.9300 0.9636

Table 5.2: Simulation parameters and result summary for a 4 × 4 × 4 mesh using p = 5
for Reτ = 100 to study non-linear stability, partition selection and VMS modeling.

Model Flux p q ε s Le Slip τw uτ

�VMS-SF SBLDG 5 7 10.0 4 2 0.3690 0.93462 0.9663

Table 5.3: A result at Reτ = 395 to demonstrate the applicability of the guidelines devel-
oped at Reτ = 100 with �VMS for higher Reynolds numbers. A 4×9×6 mesh used in this
study gives a planar resolution ∆x+ ≈ 310 and ∆z+ ≈ 103 viscous wall units. Meanwhile
the minimum near-wall resolution is the y−direction is ∆y+

w ≈ 2.305. These parameters
are selected to match the 4 × 4 × 4 case at Reτ = 100 using p = 5.
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Figure 5.1: Spectral filter transfer functions for different polynomial orders. (a) p = 3. (b)
p = 4. (c) p = 5. (d) p = 6. (e) p = 8. (f ) p = 10. s is the spectral shift parameter.
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Figure 5.2: Meanflow and rms profiles for Reτ = 100 computed with a 4 × 4 × 4 mesh
using p = 5 at Reτ = 100 with SF [61] and PD [67]: DNS; s = 1; s = 3;

q = 10.
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Figure 5.3: 1-D energy spectrum in the x−and z− directions at y+ ≈ 12 wall units for
Reτ = 100 computed with a 4 × 4 × 4 mesh using p = 5 at Reτ = 100 with SF [61] and
PD [67]: DNS; s = 1; s = 3; q = 10.
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Figure 5.4: Reynolds, viscous, and total stress profiles for Reτ = 100 computed using a
4 × 4 × 4 mesh using p = 5 with SF [61] and PD [67]: DNS; s = 1;
s = 3; q = 10.



Chapter 5. Local Variational Multi-Scale — �V MS 147

0 100 200 300 400 500 600
−0.2

0

0.2

0.4

0.6

0.8

1

x+

R
uu

,R
vv

,R
w

w
 

λ
x
+ ≈ 200 

(a)

0 50 100 150 200
−0.5

0

0.5

1

z+

R
uu

,R
vv

,R
w

w
 

λ
z
+ ≈ 50 

(b)

Figure 5.5: Important length scales for partition selection (Le) in �VMS for the turbulent
channel flow [76]. Velocity correlation obtained from a 8 × 8 × 8 mesh using p = 6 for
Reτ = 100 at y+ ≈ 10: (a) Streamwise direction. (b) Spanwise direction.
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Figure 5.6: Meanflow and rms profiles for Reτ = 100 obtained with a 4 × 4 × 4 mesh
using p = 5 with SF, PD, and �VMS employing PD: DNS; �VMS, Le = 2, and
q = 10; SF, s = 3; PD, q = 10.



Chapter 5. Local Variational Multi-Scale — �V MS 149

0.5 1 10 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

k
x

E
uu

,E
vv

,E
w

w
 

(a)

10
0

10
1

10
2

10
−7

10
−5

10
−3

10
−1

10
1

k
z

E
uu

,E
vv

,E
w

w
 

(b)

Figure 5.7: 1-D energy spectrum in the x−and z− directions at y+ ≈ 12 wall units for
Reτ = 100 obtained with a 4 × 4 × 4 mesh using p = 5 with SF, PD, and �VMS employing
PD: DNS; �VMS, Le = 2, and q = 10; SF, s = 3; PD, q = 10.
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Figure 5.8: Reynolds, viscous and total stress profiles for Reτ = 100 obtained with a
4 × 4 × 4 mesh using p = 5 with with SF, PD, and �VMS employing PD: DNS;
�VMS, Le = 2, and q = 10 ; SF, s = 3; PD, q = 10.
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Figure 5.9: Illustration of issues involved in �VMS modeling. Meanflow and rms profiles
for Reτ = 100 obtained with a 4 × 4 × 4 mesh using p = 5: DNS; SBLDG,
Le = 2; SBLDG, Le = 2, s = 4; BR, Le = 1; BR, Smagorinsky (Le = 0).
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Figure 5.10: Illustration of issues involved in �VMS modeling. Reynolds, viscous and
total stress profiles for Reτ = 100 obtained with a 4 × 4 × 4 mesh using p = 5: DNS;

SBLDG, Le = 2; SBLDG, Le = 2, s = 4; BR, Le = 1.



Chapter 5. Local Variational Multi-Scale — �V MS 153

0.5 1 10 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

k
x

E
uu

,E
vv

,E
w

w
 

(a)

10
0

10
1

10
2

10
−7

10
−5

10
−3

10
−1

10
1

k
z

E
uu

,E
vv

,E
w

w
 

(b)

Figure 5.11: Illustration of issues involved in �VMS modeling. 1-D energy spectrum in
the x− and z− direction evaluated at y+ ≈ 12 for Reτ = 100 obtained with a 4 × 4 × 4
mesh using p = 5: DNS; SBLDG, Le = 2; SBLDG, Le = 2, s = 4;

BR, Le = 1.
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Figure 5.12: Role of parition (Le) in �VMS. Meanflow and rms profiles for Reτ = 100
obtained with a 4 × 4 × 4 mesh with p = 5 and SBLDG: DNS; Le = 2;

Le = 3; Le = 2 and s = 4.
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Figure 5.13: The role of partition (Le) in �VMS. 1-D energy spectrum in the x− and z−
direction evaluated at y+ ≈ 12 for Reτ = 100 obtained with a 4 × 4 × 4 mesh with p = 5
and SBLDG: DNS; Le = 2; Le = 3; Le = 2 and s = 4.
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Figure 5.14: The effect of local polynomial refinement in �VMS. Meanflow and rms pro-
files for Reτ = 100 obtained with a 4 × 4 × 4 mesh with Le = 2, s = 4, and SBLDG:
DNS; p = {6, 5, 5, 6}; p = 5.
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Figure 5.15: The effect of local polynomial refinement in �VMS. 1-D energy spectrum in
the x− and z− direction evaluated at y+ ≈ 12 for Reτ = 100 obtained with a 4 × 4 × 4
mesh with Le = 2, s = 4, and SBLDG: DNS; p = {6, 5, 5, 6}; p = 5.
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Figure 5.16: Local polynomial refinement in �VMS. Reynolds, viscous and total stress
profiles for Reτ = 100 obtained with a 4 × 4 × 4 mesh with Le = 2, s = 4, and SBLDG:

DNS; p = {6, 5, 5, 6}; p = 5.
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Figure 5.17: Meanflow and rms profiles for Reτ = 395 obtained using a relative resolution
that matches a lower Reynolds number case. Simulation parameters are listed in Table 5.3:

DNS; SBLDG.
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Figure 5.18: 1-D energy spectrum in the x− and z− directions at y+ ≈ 20 wall units for
Reτ = 395 obtained using a relative resolution that matches a lower Reynolds number case.
Simulation parameters are listed in Table 5.3: DNS; SBLDG.
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Figure 5.19: Reynolds, viscous and total stress profiles for Reτ = 395 simulation ob-
tained using a relative resolution that matches a lower Reynolds number case. Simulation
parameters are listed in Table 5.3: DNS; SBLDG.





Chapter 6

Discussion and Future Work

We conclude with a summary of the principal findings of the current research and present

our recommendations for future research based on this work.

6.1 Conclusions

We have implemented and studied the efficacy of multi-scale modeling in a DG spatial

discretization that we term local Variational Multi-Scale – �VMS. Specifically, the current

work focussed on evaluation of this framework for wall-bounded turbulence using a fully-

developed turbulent channel flow.

The results of the spatial resolution study, undertaken in Chapter 3, may be categorised

into two major components – resolution effects in the planar directions and wall-normal

direction. The planar resolution effects may be further subdivided into streamwise and

spanwise effects. The non-linear stability of the simulation is found to depend critically on

the resolution in the spanwise direction. Meanwhile, we find that the level of numerical

dissipation in the simulation is inversely proportional to the resolution in the streamwise

direction.

Meanwhile, the y−direction resolution is found to control the degree of momentum slip

at the solid walls that directly affects the accuracy of τw predictions. For large ∆y+
w , the

magnitude of slip are significantly high leading to poor τw predictions. Simultaneously, en-

forcement of wall boundary conditions weakly through numerical viscous fluxes is found to

mitigate near-wall resolution requirements, compared with traditional discretizations [14],

in the y direction. In fact, by allowing the flow to slip at the wall, part of the boundary

layer is captured in the solution jump. Thereby, the influence of the wall commensurate

with the local resolution is simulated. Further, regulating the slip at the solid walls, through

a solution jump penalty in the numerical viscous flux, is found to improve τw predictions

even at relatively large ∆y+
w . Additionally, the introduction of the penalty appears to have a

stabilizing influence on the solution, and thereby, enhancing non-linear stability properties

of the simulation.
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Overall, without explicit modeling, reasonable low-order statistics are obtained using

∆x+ ≈ 150, ∆z+ ≈ 50, and ∆y+
m ≈ 10 with p ≥ 3 that gives ∆y+

w ≤ 2. Below these

resolutions, the errors are dominated by the presence of numerical dissipation. Thereafter,

aliasing and SGS effects become increasingly important. The minimization of these effects

requires relatively high polynomial orders (p > 5) with the above mesh guidelines.

Now, in the context of reduced order modeling, the low resolution in the spanwise

direction likely exacerbate the aliasing and SGS effects that adversely affects non-linear

stability. Therefore, Spectral Filtering (SF) [61] and Polynomial Dealiasing (PD) [67]

were explored as strategies for improving the non-linear stability of the simulation. Al-

though both approaches are successful in ensuring non-linear stability, PD may be better

suited to SGS modeling. Further, while solutions obtained using a combination of SF [61]

and SBLDG offer a computationally efficient alternative, a proper selection of additional

parameters (s, ε) may require extensive numerical experimention in general flow configu-

rations. Meanwhile, PD [67] is found to be both an effective as well as a simple strategy

that simultaneously minimizes aliasing while isolating SGS effects.

Finally, the introduction of multi-scale modeling, where the scale separation is related

to the physical structures in the flow [76, 77], successfully accounts for the SGS effects.

Further, improved results obtained using local polynomial refinement demonstrate the effi-

cacy of �VMS for both accurate and efficient wall-bounded turbulence simulation.

6.2 Future Work

The locality of the DG spatial discretization and the ability of specify model parameters

individually on each element in �VMS holds promise for surgical modeling of a wide range

of flows. Thus, a natural extension of the current work is to test the capabilities of �VMS

for flows in complex geometries.

In fact, VMS is a hybrid method that combines DNS and LES on adjacent scale ranges.

Thus, an appropriate selection of the partition parameter (Le) provides a natural mechanism

to toggle the SGS model. Thus, in addition to coupling of solutions of different fidelities

(hp−refinement) on adjacent elements, different models may be introduced in different

regions of the flow (see Figure 2.3). Here, the issues related to the choice of the partition

parameter Le, the location of the boundaries between different �VMS modeling zones, and

appropriate SGS models need to be addressed.
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Meanwhile, the DG spatial discretization also provides a practical means to integrate

RANS and VMS through the numerical fluxes. The combination of �VMS and RANS has

the potential to produce very efficient computations. Thus, providing a unified framework

for efficient and accurate turbulence simulation.

The exploration of the weak wall boundary conditions enforcement through numeri-

cal fluxes, using a general three-dimensional boundary layer, could potentially lead to a

mathematically consistent approach for robust wall-modeling.

Now, the explicit time advancement scheme imposes a severe restriction on the timestep

size, especially at the higher polynomial orders. An efficient implicit time-advancement

scheme/strategy that allows larger timesteps is important to reduce the overall computa-

tional expense of turbulence simulations.

Thus far, VMS [47, 48, 78] implementations have generally been restricted to incom-

pressible flows. Meanwhile, there has been a steady development of LES to flows where

compressibility effects are important. Therefore, one can expect the success of the multi-

scale modeling strategy with incompressible flows to extend to compressible flows [57].

Therefore, the development of multi-scale modeling for such flows, building on prior re-

search efforts, will allow �VMS to tackle an additional class of high speed flows.





Bibliography

[1] K. Akselvoll and P. Moin. Large Eddy Simulation of Turbulent Confined Coannu-

lar Jets and Turbulent Flow Over A Backward Facing Step. PhD thesis, Stanford

University, 1995.

[2] D. N. Arnold. An interior penalty finite element method with discontinuous elements.

SIAM J. Numer. Anal., 19:742–760, 1982.

[3] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marin. Unified analysis of discontinu-

ous Galerkin methods for elliptic problems. SIAM J. Numer. Anal., 39(5):1749–1779,

2002.

[4] H. L. Atkins. Continued development of the discontinuous Galerkin method for com-

puational aeroacoustic applications. AIAA Paper 97-1581, 1997.

[5] N. Aubry, P. Holmes, J. Lumley, and E. Stone. The dynamics of coherent structures

in the wall region of a turbulent boundary layer. J. Fluid Mech., 192:115–173, 1988.

[6] F. Bassi and S. Rebay. A high-order accurate discontinuous finite element method for

the numerical solution of the compressible Navier–Stokes equations. J. Comp. Phys.,

131:267–279, 1997.

[7] F. Bassi and S. Rebay. Numerical evaluation of two discontinuous Galerkin methods

for the compressible Navier–Stokes equations. Inter. J. Num. Meth. Fluids, 40:197–

207, 2002.

[8] F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti, and M. Savini. A high-order accurate dis-

continuous finite emlement method for inviscid and viscous turbomachinery flows. In

R. Decuypere and G. Dibelius, editors, 2nd European Conference on Turbomachinery

Fluid Dynamics and Thermodynamics, pages 99–108, Technologisch Instituut, 1997.

[9] C. E. Baumann and J. T. Oden. A discontinuous hp finite element method for the

Euler and Navier–Stokes equations. Inter. J. Num. Meth. Fluids, 31:79–95, 1999.

[10] K. S. Bey and J. T. Oden. hp− version discontinuous galerkin methods for hyper-

bolic conservation laws. Computer Methods in Applied Mechanics and Engineering,

133:259–286, 1996.

167



168 Bibliography

[11] A. N. Brooks and T. J. R. Hughes. Streamline upwind/Petrov–Galerkin formula-

tions for convection dominated flows with particular emphasis on the incompressible

Navier–Stokes equations. Comp. Meth. in Appl. Mech. Eng., 32:199–259, 1982.

[12] G. L. Brown and A. Roshko. On density effects and large structure in turbulent mixing

layers. J. Fluid Mech., 64:775–816, 1974.

[13] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang. Spectral Methods in Fluid

Dynamics, page 69. Springer-Verlag, 1988.

[14] Y. Chang. Reduced Order Methods for Optimal Control of Turbulence. PhD thesis,

Rice University, Mechanical Engineering and Materials Science, 2000.

[15] Y. Chang, S. S. Collis, and S. Ramakrishnan. Viscous effects in control of near-wall

turbulence. Phys. Fluids, 14(11):4069–4080, 2002.

[16] C.-J. Chen and S.-Y. Jaw. Fundamentals of Turbulence Modeling. Taylor & Francis,

1998.

[17] H. Choi, P. Moin, and J. Kim. Active turbulence control for drag reduction in wall-

bounded flows. J. Fluid Mech., 262(75):75–110, 1994.

[18] B. Cockburn, editor. High-order methods for computational applications, Lecture

Notes in Computational Science and Engineering, chapter Discontinuous Galerkin

methods for convection-dominated problems, pages 69–224. Springer, Berlin, 1999.

[19] B. Cockburn. Discontinuous Galerkin methods. ZAMM - Journal of Applied

Mathematics and Mechanics /Zeitschrift für Angewandte Mathematik und Mechanik,

83(11):731–754, 2003.

[20] B. Cockburn, G. Kanschat, I. Perugia, and D. Schotzau. Superconvergence of the local

discontinuous Galerkin method for elliptic problems on cartesian grids. Technical

Report 2000/71, UMSI, 2000.

[21] B. Cockburn, G. Karniadakis, and C.-W. Shu, editors. Discontinuous Galerkin Meth-

ods: Theory, Computation, and Applications. Springer, 2000.

[22] B. Cockburn and C.-W. Shu. TVD Runge–Kutta local projection discontinuous

Galerkin finite element method for scalar conservation laws II: General framework.

Math. Comp., 52:411–435, 1989.



Bibliography 169

[23] B. Cockburn and C.-W. Shu. TVD Runge–Kutta local projection discontinuous

Galerkin finite element method for scalar conservation laws IV: The multidimensional

case. Math. Comp., 54:545–581, 1990.

[24] B. Cockburn and C.-W. Shu. The local discontinuous Galerkin method for time-

dependent convection-diffusion systems. SIAM J. Numer. Anal., 35:2440–2463, 1998.

[25] B. Cockburn and C.-W. Shu. The Runge–Kutta discontinuous Galerkin method for

conservation laws v. J. Comp. Phys., 141:199–224, 1998.

[26] B. Cockburn and S. Y. L. C.-W. Shu. TVD Runge–Kutta local projection discontinu-

ous Galerkin finite element method for scalar conservation laws III: One dimensional

systems. J. Comp. Phys., 84:90–113, 1989.

[27] G. N. Coleman, J. Kim, and R. D. Moser. A numerical study of turbulent supersonic

isothermal-wall channel flow. J. Fluid Mech., 305:159–83, 1995.

[28] S. S. Collis. Monitoring unresolved scales in multiscale turbulence modeling. Phys.

Fluids, 13(6):1800–1806, 2001.

[29] S. S. Collis. The DG/VMS method for unified turbulence simulation. AIAA Paper

2002-3124, 2002.

[30] S. S. Collis. Discontinuous Galerkin methods for turbulence simulation. In Proceed-

ings of the 2002 Center for Turbulence Research Summer Program, pages 155–167,

2002.

[31] S. S. Collis and Y. Chang. On the use of LES with a dynamic subgrid scale model

for the optimal control of wall bounded turbulence. In D. Knight and L. Sakell, edi-

tors, Recent Advances in DNS and LES, pages 99–110. Kluwer Academic Publishers,

1999.

[32] S. S. Collis, Y. Chang, S. Kellogg, and R. D. Prabhu. Large eddy simulation and

turbulence control. AIAA Paper 2000-2564, 2000.

[33] J. W. Deardorff. A numerical study of three-dimensional turbulent channel flow at

large Reynolds number. J. Fluid Mech., 41:453–480, 1970.



170 Bibliography

[34] J. Douglas Jr. and B. L. Dupont. Interior penalty procedures for elliptic and parabolic

Galerkin methods, chapter Lecture Notes in Physics, vol. 58. Springer–Verlag, Berlin,

1976.

[35] M. Dubiner. Spectral methods on triangles and other domains. J. Sci. Comp., 6:345,

1991.

[36] J. H. Ferziger. Large eddy simulation. In T. B. Gatski, M. Y. Hussaini, and J. L.

Lumley, editors, Simulation and Modeling of Turbulent Flows, ICASE/LaRC Series

in Computational Science and Engineering, chapter 3. Oxford University Press, 1996.

[37] C. Fureby and F. Grinstein. Large eddy simulation of high-reynolds-number free and

wall-bounded flows. J. Comp. Phys., 181:68–97, 2002.

[38] M. Germano, U. Piomelli, P. Moin, and W. H. Cabot. A dynamic subgrid-scale eddy

viscosity model. Phys. Fluids A, 3(7):1760–1765, 1991.

[39] S. Ghosal and P. Moin. The basic equations for the large-eddy simulation of turbulent

flows in complex-geometry. J. Comp. Phys., 118:24–37, 1995.

[40] E. P. Hammond, T. R. Bewley, and P. Moin. Observed mechanisms for turbulence at-

tenuation and enhancement in opposition-controlled wall-bounded flows. Phys. Flu-

ids, 10(9):2421–2423, 1998.

[41] C. Hirsch. Numerical Computation of Internal and External Flows, Vol. I: Funda-

mentals of Numerical Discretization. Wiley, New York, 1988.

[42] J. Holmen, T. J. R. Hughes, A. A. Oberai, and G. N. Wells. Sensitivity of the scale par-

tition for variational multiscale large-eddy simulation of channel flow. Phys. Fluids,

16(3):824–827, 2004.

[43] P. Holmes, J. L. Lumley, and G. Berkooz. Turbulence, Coherent Structures, Dynami-

cal Systems and Symmetry. Cambridge University Press, 1996.

[44] F. Q. Hu, M. Y. Hussaini, and P. Rasetarinera. An analysis of the discontinuous

Galerkin method for wave propagation problems. J. Comp. Phys., 151:921–046, 1999.

[45] T. J. R. Hughes, G. R. Feijoo, L. Mazzei, and J. B. Quincy. The variational multiscale

method – a paradigm for computational mechanics. Comp. Meth. in Appl. Mech. Eng.,

166(1–2):3–24, 1998.



Bibliography 171

[46] T. J. R. Hughes, L. Mazzei, and K. E. Jansen. Large eddy simulation and the varia-

tional multiscale method. Comp Vis Sci, 3:47–59, 2000.

[47] T. J. R. Hughes, L. Mazzei, A. A. Oberai, and A. A. Wray. The multiscale formulation

of large eddy simulation: Decay of homogeneous isotropic turbulence. Phys. Fluids,

13(2):505–512, 2001.

[48] T. J. R. Hughes, A. A. Oberai, and L. Mazzei. Large eddy simulation of turbulent

channel flows by the variational multiscale method. Phys. Fluids, 13(6):1755–1754,

2001.

[49] T. J. R. Hughes and J. R. Stewart. A space-time formulation for multiscale phenom-

ena. Journal of Compuational and Applied Mathematics, 74:217–29, 1996.

[50] K. Jansen. The effect of element topology on variational multiscale methods for les.

Bull. Am. Phys. Soc., 45(9):56, 2000.

[51] C. Johnson and J. Pitkäranta. An analysis of the discontinuous galerkin method for a

scalar hyperbolic equation. Mathematics of Computation, 46(173):1–26, 1986.

[52] S. Kang and H. Choi. Active wall motions for skin-friction drag reduction. Phys.

Fluids, 12(12):3301–3304, 2000.

[53] G. E. Karniadakis and S. J. Sherwin. Spectral/hp Element Methods for CFD. Oxford

University Press, 1999.

[54] J. Kim, P. Moin, and R. Moser. Turbulence statistics in fully developed channel flow

at low Reynolds number. J. Fluid Mech., 177:133–166, 1987.

[55] S. J. Kline, W. C. Reynolds, F. A. Schraub, and P. W. Runstadler. The structure of

turbulent boundary layers. J. Fluid Mech., 1967.

[56] A. N. Kolmogorov. The local structure of turbulence in incompressible viscous fluid

for very large reynolds number. Dokl. Akad. Nauk SSSR, 30:301–305, 1941.

[57] B. Koobus and C. Farhat. A variational multiscale method for the large eddy simu-

lation of compressible turbulent flows on unstructured meshes-applications to vortex

shedding. Computer Methods in Applied Mechanics and Engineering, 193:1367–

1383, 2004.



172 Bibliography

[58] A. G. Kravchenko and P. Moin. On the effect of numerical errors in large eddy simu-

lation of turbulent flows. J. Comp. Phys., 131:310–322, 1996.

[59] P. LeSaint and P. A. Raviart. On a finite element method for solving the neutron

transport equation. In C. de Boor, editor, Mathematical Aspects of Finite Element

Methods in Partial Differential Equations, pages 89–145. Academic Press, 1974.
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